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FOREWORD TO PART B

Part B of Advances in Econometrics, Volume 40, contains 11 chapters on topics
that are distinct from those considered in Part A. Part B examines innovations
in stochastic frontier (SF) analysis, nonparametric and semiparametric modeling
and estimation, A/B experiments, and quantile regression. Together, the two
parts form one of the largest volumes to date in the Advances in Econometrics
series.

Two chapters in the volume address issues in SF models. The chapter by
Gholamreza Hajargasht and William E. Griffiths considers a semiparametric SF
model with correlated effects, where covariates in the production frontier enter
nonparametrically. Specifically, they tackle a model of the form:

Yie = (Xi) — ui + vig,

where u; is a time-invariant one-sided inefficiency term and f is modeled via
penalized splines. They consider cases where x is both univariate and multivariate.
For the multivariate case, they take up partially linear, additive, and general non-
parametric forms, treating the final case via multivariate spline bases. The meth-
odology is illustrated in extensive Monte Carlo experiments. Eri Nakamura,
Takuya Urakami, and Kazuhiko Kakamu consider a fully parametric, cross-
sectional SF model with a greater focus on a specific application. They apply the
SF model to examine how the division of labor (as measured by the number of
firm sections) impacts total costs among a sample of 79 Japanese water suppliers
in 2010. They leverage the population served by the ith supplier as a source of
exogenous variation and describe inference via Markov chain Monte Carlo
(MCMC). They find that ignoring the endogeneity of the number sections (or
functional units) within a supplying firm provides a conservative underestimate of
its effect on total cost, and that costs rise with the number of sections. Their work
points toward a policy implication where the integration of internal divisions
within Japanese water suppliers leads to more cost-effective production.

A set of three chapters examines topics in semiparametric and nonparametric
modeling. A chapter by Justin L. Tobias and Joshua C. C. Chan presents an
interesting modeling approach that aims to resolve an important difficulty in the
modeling of unknown regression functions. Because such modeling typically
nests the important linear case at the boundary of the parameter space, it can
only approximate, but not reproduce exactly, the linear regression model. The
chapter proposes a hierarchical setup in which a Bernoulli variable determines
whether the model is exactly linear or nonlinear (for some predetermined thresh-

vii
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old level of nonlinearity), and hence in the course of sampling, the realizations
of that variable can be used to infer the probability of each of the two cases.
The methodology and its usefulness are demonstrated in generated data experi-
ments and an application involving the impact of the body mass index on labor
market earnings. Jianghao Chu, Tae-Hwy Lee, and Aman Ullah consider the
analysis of semiparametric single index models in big data settings with many
regressors, of which few may be relevant. For this reason, variable selection is a
key concern in this setting. The authors propose the SIM-Rodeo algorithm,
which handles variable selection as local bandwith selection, and shows its con-
sistency in variable selection. A Monte Carlo study shows its superior perfor-
mance relative to alternatives such as the SIM-Lasso. In an important chapter,
Edward George, Purushottam Laud, Brent Logan, Robert McCulloch, and
Rodney Sparapani pursue a fully nonparametric extension of the Bayesian
Additive Regression Tree (BART) model. While BART achieves flexible model-
ing of the conditional mean function through ensambles of trees, the authors
generalize its applicablity to the case of non-Gaussian errors by using Dirichlet
process mixtures (DPM). An important motivation for the chapter is that estima-
tion should be not only pursued without relying on strong assumptions but also in
a fairly automatic way that does not require too much tuning in a wide variety of
settings. The authors show that the resulting DPMBART model performs well in
simulated and real data studies with normal and non-normal errors.

This volume also contains two chapters developing methodologies useful for
making quick and reliable inference in so-called A/B experiments. These experi-
ments often involve millions of observations and are conducted routinely by
large online businesses. The goal of these experiments is to assess the effect of
various treatments such as changes in webpage design on revenue; the difference
between treated and untreated outcomes is commonly referred to as fift. John
Geweke introduces BABI, or Bayesian analysis of A/B data. He accounts for the
prevalence of zeros and heavy tails in such data by considering a zero-inflated
log-normal model. A key advantage of BABI is its ability to allow for informed
priors surrounding values of lift; Geweke specifically considers nine states
related to lift breadth and depth corresponding to either no effect, the anticipated
effect, or some other effect of treatment in each dimension. He applies this meth-
odology using data from 21 different experiments conducted by a business with
a large online presence, and finds that BABI yields tighter credible intervals
than alternate approaches. Hedibert Freitas Lopes, Matthew Taddy, and
Matthew Gardner consider the issue of inference of means of heavy-tailed distri-
butions, a feature that often characterizes distributions of online expenditure
data. Their approach is to specify the likelihood as multinomial with a finite
(but large) number of support points for values less than some threshold and to
allow for heavy tails by specifying the density above the threshold as a general-
ized Pareto distribution. They show how Bayesian inference can be conducted
on the sampling weights and tail parameters using a novel independence
Metropolis—Hastings algorithm. The results are applied to a large A/B experi-
ment containing more than 107 observations in eBay.
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Three chapters in the volume relate to quantile regression. The chapter by
Mohammad Arshad Rahman and Angela Vossmeyer discusses Bayesian techni-
ques for estimating quantile regressions in binary longitudinal data settings. In
Bayesian approaches, quantile regression typically employs the asymmetric
Laplace distribution, noting the connection between the posterior mode under
such a likelihood and a flat, improper prior, and the traditional frequentist
quantile regression estimator. A useful additive mixture representation of the
asymmetric Laplace, first noted by Kozumi and Kobayashi (2011) and skillfully
adapted by Rahman and Vossmeyer to a binary longitudinal specification, yields
computationally convenient MCMC inference. Rahman and Vossmeyer apply
their methodology in two interesting applications: one involving determinants of
female labor force participation and a second involving home ownership.
Debajit Dutta, Subhra Sankar Dhar and Amit Mitra also consider the issue of
quantile estimation, but of a location parameter in a stochastic volatility model.
They derive the asymptotic distribution of the quantile estimator without assum-
ing the density of the error is positive near the population quantile. They also
discuss a Bayesian estimator based on the asymmetric Laplace likelihood. The
third chapter in the set — by Mohammad Arshad Rahman and Shubham
Karnawat — introduces a framework for flexible Bayesian quantile regression for
ordinal outcomes. To overcome the problem that the skewness of the asymmet-
ric Laplace distribution is determined by the chosen quantile, the authors study
the generalized asymmetric Laplace (GAL) distribution. Their derivation of the
GAL cumulative distribution and moment generating functions allows them to
construct a likelihood function and posterior density that is explored by MCMC
methods. The authors further demonstrate the advantages of their approach in
an extensive simulation study and an application to public opionion on home
ownership in the United States after the Great Recession.

The volume closes with “A Reaction,” a brief comment from Dale J. Poirier
on the June 2018 Advances in Econometrics Conference. Readers may take
away from this short note a belief that the market for his classic Intermediate
Statistics and Econometrics text has been surprisingly limited, and consumers of
Men Are from Mars, Women Are from Venus should find his work equally
appealing. We have all heard stories of successful marriages between devout
Democrats and staunch Republicans, cat lovers and dog enthusiasts, and
Michigan fans and Ohio State devotees. In two former students and contributors
to this volume, Dale notes a similar warm stasis between a Bayesian and a fre-
quentist. Whether or not the balanced presentation of his text served as a model
for this otherwise inexplicably successful union of Hatfields and McCoys, the
editors cannot say. We are tempted to recommend that Dale stick with his day
job rather than branch out into couples therapy, but we also understand that his
days are now free and unclaimed by the academy. Regardless of its true scope of
influence, we remain grateful for his book and its many lessons, this opportunity
to pay tribute to Dale, and the very positive impacts he has had on our careers.
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A SEMIPARAMETRIC STOCHASTIC
FRONTIER MODEL WITH
CORRELATED EFFECTS

Gholamreza Hajargasht® and William E. Griffiths®

“Swinburne Business School, Australia
b University of Melbourne, Australia

ABSTRACT

We consider a semiparametric panel stochastic frontier model where one-
sided firm effects representing inefficiencies are correlated with the regressors.
A form of the Chamberlain-Mundlak device is used to relate the logarithm of
the effects to the regressors resulting in a lognormal distribution for the
effects. The function describing the technology is modeled nonparametrically
using penalized splines. Both Bayesian and non-Bayesian approaches to esti-
mation are considered, with an emphasis on Bayesian estimation. A Monte
Carlo experiment is used to investigate the consequences of ignoring correla-
tion between the effects and the regressors, and choosing the wrong functional
form for the technology.

Keywords: Technical efficiency; endogeneity; penalized splines;
Gibbs sampling; maximum simulated likelihood; lognormal distribution

1. INTRODUCTION

The literature on the stochastic frontier model and its role in the estimation of
firm efficiency is immense. An appreciation of the enormous number of
developments and advances in model specification and estimation can be
obtained from the review by Kumbhakar, Parmeter, and Zelenyuk (2017). Their
review of 196 references describes, but is not limited to, alternative models for
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the distributions of the inefficiency and idiosyncratic errors, handling of
endogeneity, and nonparametric estimation of the production frontier. We add
to this literature by considering a model which includes, simultaneously,
nonparametric estimation of the frontier, and endogeneity in the form of
correlation between the regressors and the inefficiency error. In contrast to
previous studies that used kernel-based regression methods — see, for example,
Fan, Li, and Weersink (1996), Parmeter and Racine (2012), and Noh (2014) —
we use splines to model nonparametric elements in the frontier. To model the
correlation between the regressors and the inefficiency error, we follow Griffiths
and Hajargasht (2016) who used a Chamberlain-Mundlak device — see
Mundlak (1978), Chamberlain (1984), and Wooldridge (2010). A number of
other approaches for modeling endogeneity have been described by Amisler,
Prokhorov, and Schmidt (2016).

In Section 2 we introduce a panel stochastic frontier model characterized by
a flexible functional form for the frontier and a firm inefficiency error that
follows a lognormal distribution with scale parameter that depends on time-
invariant functions of the inputs. In Section 3, we show how a spline-based
representation of the flexible frontier with a single input can be written as a
linear function of a number of parameters. Estimation of the resulting model via
a within estimator, a maximum likelihood estimator, and a Bayesian estimator
is considered in Sections 4, 5, and 6, respectively. Changes necessary for a more
general frontier with multiple inputs are described in Section 7. In Sections 8
and 9, a Monte Carlo experiment is used to assess the performance of the
Bayesian estimator and to investigate the consequences of misspecification.
Concluding remarks are offered in Section 10.

2. THE MODEL

We consider the following panel random effects stochastic production frontier
model with a time-invariant inefficiency term:

Yie = f(Xit) — wi + vig 2.1

In Eq. 2.1), i=1,..., N indexes the firms and t = 1,..., T indexes time, X is
a row vector of inputs, y;, represents the logarithm of output, f(x;) is the log of
the production frontier, u; is a non-negative random error which accounts for
time-invariant inefficiency of firm i, and v;, is an idiosyncratic error assumed to
be ii.d. N(0,6%). The model can also represent a stochastic cost frontier, with
vi being the logarithm of cost, by changing “—u;” to “+u;.”

To model correlation between the inefficiency error u; and some or all of the
inputs, we assume In(x;) is normally distributed with a mean that depends on the
firm averages of some of the inputs or functions of them. Averages of these
functions of the inputs are collected in the vector z;. The resulting endogeneity
model for describing how the inefficiency error is correlated with the inputs is
given by:



Semiparametric Stochastic Frontier 3

In(w;) = z;y + e (2.2)
with ¢; ~i.i.d. N (0, /12). Alternatively, we write u; ~ LN (zy, 4?) where LN denotes
the lognormal distribution.! Eq. (2.2) is an extension of the model considered by
Mundlak (1978) for a conventional random effects panel data model with corre-
lated effects. Modeling of endogeneity in this way, and its extension by
Chamberlain (1984), have been referred to as the Chamberlain-Mundlak device, a
device which has proved to be very useful in the context of nonlinear panel data
models with endogeneity. It has been applied to model endogeniety in probit, frac-
tional response, Tobit, sample selection, count data, double hurdle, unbalanced
panel models, and models with cluster sampling. See Wooldridge (2010) for a
review and for references to these applications. Griffiths and Hajargasht (2016)
employ this model in the context of a frontier than can be written as a linear func-
tion of parameters f(X;;) = X;f. In this chapter, we allow for a more flexible func-
tional form by introducing spline-based nonparametric modeling of the frontier
f(xi), in the context of Egs. (2.1) and (2.2).

3. SPECIFICATION FOR A UNIVARIATE REGRESSOR

There are a number of approaches that can be used to model the function f(x;).
Studies that have done so nonparametrically, but in the context of kernel
estimation, and without allowing for endogeneity, include Fan et al. (1996),
Kumbhakar, Park, Simar, and Tsionas (2007), Martins-Filho and Yao (2015),
Parmeter and Racine (2012), and Noh (2014). Reviews of nonparametric
contributions have been provided by Parmeter and Kumbhakar (2014) and
Kumbhakar et al. (2017). Here, we use penalized low-ranked splines to model
f(x;). Because they have a nice Bayesian counterpart, they can be used effectively
to estimate our model, and they have good properties (see e.g., Chib, Greenberg, &
Jeliazkov, 2009; Claeskens, Krivobokova, & Opsomer, 2008; Ruppert, Wand, &
Carroll, 2003). One can replace the nonparametric function with terms that are
linear in the parameters and place Gaussian priors on these parameters.

Given the inherent difficulties of nonparametric modeling in many
dimensions, and for expositional convenience, we begin by explaining the
procedure for a univariate regressor x;;, in the context of the univariate model:

Yie = f(xir) — ui + vir 3.1

Extension to various multivariate settings such as partially linear, additive,
additive with interactions, and fully nonparametric models is straightforward and
presented later. The polynomial spline representation of the function f(x;,) is>

K
S i) = o+ Prxu + -+ Bpxid + Z wi(Xi — ki), (3.2)
k=1

where {ki, k2, ...,kg} are some chosen points in the range of x known as knots,
and (x; — Kk)i is a polynomial term equal to zero when x; <ky; the B and wy



4 G. HAJARGASHT AND W. E. GRIFFITHS

are coefficients to be estimated.> A polynomial degree of p =2 is typically
adequate — one less than the polynomial degree is the degree of differentiability
at all points. To avoid overfitting, a restriction is imposed on the magnitude of
the elements of W = (wy,wy,...,wk), either of the form ww<C, leading to
penalized least squares or penalized likelihood estimators, or by assuming
w~N(0,7°1), leading to Bayesian or non-Bayesian mixed model estimators.*
Combining Egs. (3.1) with (3.2), and writing the result in matrix notation conve-
nient for estimation, we have:

y=Xofy + XiW —u®ir+v=Xp—u®ir+v (3.3)

where y and v are NT-dimensional vectors containing the y;, and v;, respectively;
X =[Xp, Xi]is an [NT X (p + 1+ K)] matrix with x; = (Xo,iz, xly,-,) in its it-th

row, where Xo; = (1,X,...,x5), and x4 = ((x; — k1), ..., (xiy — k), ). The
remaining notation in Eq. (3.3) is w' = (uy, u, ..., uy); i7 is a T-dimensional vec-
tor of ones, and p' = (§'0,W) = (by, ... f,» Wi, ..., wg ). Here and in what follows

we use the notation x;; to denote the regressors required for the spline formula-
tion rather than a vector of logs of inputs as was the case in Eq. (2.1). When
more than one regressor is introduced, the nonparametric function f is again
replaced by XoB, + X;w with a similar penalty on w, but, as we see below, the
definitions of Xy, X, and x;; change. Thus, estimation using Eq. (3.3) is equally
applicable to the case of multivariate regressors, providing suitable changes are
made for Xy, X; and x;;. We consider three methods of estimation, a within esti-
mator, a maximum likelihood estimator, and a Bayesian estimator.

4. A WITHIN ESTIMATOR

One way of estimating a stochastic frontier model with correlated effects is to
appeal to a fixed effects framework. Such an approach has been studied by Park,
Sickles, and Simar (1998), Adams, Berger, and Sickles (1999), and Sickles (2005).
These studies consider a parametric technology or use a kernel smoothing
approach to model nonparametric elements. In this section we briefly discuss how
the fixed effects approach can be combined with low-ranked splines to estimate the
proposed model. We do not study this approach in full detail; our purpose is to
demonstrate that the penalized splines framework is straightforward and appealing
even if a fixed effects approach is desired. Because the within transformation
eliminates the inefficiency error, the assumption in Eq. (2.2), describing the nature
of the endogeneity, has no bearing on the estimation procedure.
To define the “within estimator” we average Eq. (3.1) over 7 to obtain:

1z
yi= ?;f(xn) — Ui+ @.1)
Subtracting Eq. (4.1) from Eq. (3.1) gives:

1 T
Yie =¥ = f(xi) — ?Zf(xn) + vie — Vi 4.2)
=1
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Using splines and the definitions in Egs. (3.2) and (3.3), we can write
Eq. (4.2) in the following regression spline form:

y-7y=X-X)p+v—¥V 4.3)

where ¥ = (.75, ....7y) ®ir, V=(,%,....,%) Qir, and X=(X|,X,...,
Xy) ®ir, with X; = T~! ZT:I x;. Estimating this equation by least squares sub-
ject to the restriction w'w < C leads to the estimator:

B, =[X-X)X-X)+0K"'X-X)(y—¥) (4.4)

K _ 0[)+1 0
0 Ik
The parameter 0 is the Lagrange multiplier from the restriction w'w < C, and

serves as a smoothing parameter. Its optimal value can be obtained using a
secondary optimization procedure such as cross-validation. The corresponding

where

within estimator for the function at each data point is fw :Xf}w. If interest
centers on the inefficiency errors, one can follow Park et al. (1998) and define:

1 & .
&= 2> (v = Fut)
T ; ' (4.5)
il,' = max(&,-) — a’,‘
Estimation of the model using this approach is easy and has the advantage of
not making any specific assumptions about the form of correlation between the
effects and the regressors. However, it has important disadvantages: the

estimator for u; is consistent with respect to 7' not N (see Park et al. 1998) and
in general the #;’s are influenced by outliers.

5. A MAXIMUM LIKELIHOOD APPROACH

If we recognize the correlated random effects nature of the inefficiency errors,
an alternative to fixed effects estimation is to embed the penalized spline
framework within a maximum likelihood approach. Using w~ N(0, z’I) as the
penalization criterion, it is convenient to rewrite the model in Eq. (3.3) as:

y=Xopy —u®ir +e (5.1

where e=X;w+v. We assume v~N(0,0’I) which implies
V = cov(e) = (6’1 + 72X, X}). Then, we can write the conditional likelihood
function as:

p(yln) = Qo) "2V~ exp{ —(y — XoBy +u®ir) V'(y — XoBy + u®ir)/2}
(5.2)
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The unconditional likelihood is obtained by integrating over u:

o) = [ [my vy
xexp{—(y~ Xy +uir) V" (y— Xof +u®ir) 2}]/(wdu. (53)

In general, this integral is intractable and direct maximization is difficult, if not
impossible. A more feasible approach is to maximize a simulated likelihood
function (see e.g. Train (2003) for general discussions of maximum simulated
likelihood and Greene (2003) for its application to a stochastic frontier model). By
averaging the function in brackets in Eq. (5.3) over a sufficiently large number of
draws from the distribution of u, we can obtain an accurate estimate of the integral
Eq. (5.3), which can then be used for maximization. Assuming u; ~ LN (z, 22),
and using an inverse cumulative distribution function (CDF) method, the i-th
element in a required N-dimensional vector of draws u® is given by:

) = exp{z,-y 0! (55”) } (5.4)

where ®(-) is the standard normal CDF, and the éf-r) are independent draws
from a uniform (0,1) distribution. Using this information, the simulated log-
likelihood for R draws of the N-dimensional vector & is:

1 R
InL = ]n{ﬁz (2’[)—11T/2|V|—1/2
= (5.5)

xexp{ — [0 (B 7.2.8”)] V"' [0 (By. 7.4.87)] /2}}

where ) (By,v,4,&”) =y — XoBy + u” ®ir. Eq. (5.5 is maximized with
respect to the parameters (ﬁo,az,y, /12,12). In practice, Halton draws are often
used instead of uniform draws (see Greene (2003) and references cited therein
for further information on Halton draws and their use in maximum simulated
o 1. . . . [ . AR o~ A2 .

likelihood estimation). Once maximum likelihood estimates (ﬁo,az, YAVIR rz)

have been obtained, we can find a corresponding estimate of the conditional
density for y that we denote by p(ylu). Then, to obtain estimates for each of the
u;, we recognize that:

o J uip(ywp(u)du
E(uly) = / uip(uly)du =2 (5.6)
P(y)
0
and estimate this mean using
R (1) 1a(r)
iy = 2=t B PO (5.7)

Zf:l p (ym(r))
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where the elements of @ are given by #!” = exp{ zf+id ' (& L Finally, to
estimate w, we recognize that its best linear unbiased predictor, with parameters
replaced by their estimates, and with @'=(i;, i1y, ..., ity ), is:

=X (/214 X0X)) ™ (v — XoBy+a @ir ) (5.8)

6. BAYESIAN ESTIMATION

Bayesian estimation has many appealing characteristics. It is convenient
computationally, its marginal posterior densities do not condition on estimates
of nuisance parameters, and prior information on firm efficiencies can improve
estimator efficiency. We begin by specifying prior distributions, and then present
the conditional posterior densities that can be used for Gibbs sampling.

6.1. Prior Distributions

In the context of Egs. (3.3) and (2.2), prior distributions are needed for
B = (Po,W), ¥, 6%, and A%. We specify an uninformative prior for f,, and we
constrain the magnitude of the wy using a prior in line with the penalized
likelihood approach. That is,

P(By) x 1 (wlz™?) ~N(0,7°1). (6.1

A further (hierarchical) prior is placed on 72. Specifically, 7=2 ~ G(A4;, B)
where G(A4, By) denotes a gamma density with shape and scale parameters A,
and By, respectively. Its density is p(r=2) = [B{" /T(4,)] (T‘Z)Alflexp{—Blr‘z}.
Relatively noninformative values for the hyperparameters, such as
Ay = By =0.01, are suitable. Similarly, for the variance of v;, we use
6t~ G(A,, B,;) and suggest A, = B, = 0.01.

For the inefficiency errors, where u; ~LN (ziy,/lz), and the z; are time-
invariant functions of x, we experimented with several alternative priors for y
and A, considering in each case their implications for (1) Markov Chain
Monte Carlo (MCMC) convergence and (2) the marginal prior distributions
of the inefficiency errors, and their corresponding efficiencies, defined as
r; = exp(—u;). Using these two criteria, we settled on a truncated normal prior
for ¥ and two alternative priors for A: a gamma prior on A~ and a truncated
uniform prior on A. Truncating a normal prior for y to values that lead to
reasonable efficiency values led to more precise estimates and improved
MCMC convergence. A gamma prior for 472 is in line with most traditional
priors specified for variance parameters, while use of a uniform prior for
standard deviations in hierarchical models (which bear some similarity to our
model) has been advocated by Gelman (2006). The notation we adopt for
these priors is:

Goprior: y~TN (1, V,;L, U) and 172~ G(4,, B;) (6.2)
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and

Uprior: y~TN (Z’ Vy;L,U) and A~ U(ay,by). (6.3)

The truncated normal parameters y and V, are what would be the prior
mean vector and covariance matrix for y if there was no truncation; L and U
are vectors containing the lower and upper truncation points for each of the
elements in y. For the uniform distribution in Eq. (6.3), @, and b, are the
minimum and maximum values for A, respectively.

Given the complexity of the model, the potential for difficulties with MCMC
convergence, and the implications for the distribution of firm efficiencies, it is
useful to provide guidelines for settings of the prior parameters in Egs. (6.2) and
(6.3). Previous work that assumed u; is exponential with a constant scale
parameter often used a relatively noninformative prior for that parameter such
that the median of the resulting prior for efficiency, r; = exp(—uw;), is 0.87. See,
for example, Koop and Steel (2001). Following this lead, a good starting point
for our model, where u; follows a lognormal distribution, is to examine the
implications of prior parameter settings for prior median efficiency. Suppose, in

the first instance, that u; ~ LN (yo,ﬂz); there are no variables z; in the mean
function for In(x;). We then need settings for (Zo’ Vy0, Lo, U0> and either

(A;,B;) or (a;,b;). The median of u; is exp(y,) and the median of r; is
exp{—exp(yo)}. Thus, a value y  that leads to an efficiency distribution centered
around r* is y, =In(=In(r). If we choose r* =087, then y =-21is a
suitable value. Values for Ly and Uy can be chosen in a similar way. For
example, setting Lo = —4 leads to a maximum possible value for median
efficiency of 0.982, and setting Uy = 0 leads to a minimum possible value for
median efficiency of 0.368. The value for ¥V, controls the possible spread of
values for y, within the truncation points. For example, Vo = 4 implies Uy = 0
and Ly = —4 would each be one standard deviation from y 0 if the distribution
was not truncated.

The prior for A introduces extra prior uncertainty about the distribution of u;
and controls its skewness and variance. For the prior 172~ G(A,, B)),
experimentation suggested that 4, = B; = 0.25 is relatively noninformative, but
sufficiently informative to facilitate MCMC convergence. For the prior
A~U(a;, by), we recommend a; = 0.1 and b, =2, values that were used in
our Monte Carlo experiment in Section 8. To check whether the settings
for (Lo, Uy, a;,b,) allow for a sufficiently wide range of possible efficiencies,
the efficiencies corresponding to the mean values of u; at the largest and smallest
values for (yo, /1) can be considered. At the upper truncation points, we
find E(uily, = 0,12 = 4) =74, with corresponding efficiency value of r=
exp(—7.4) = 0.0006. The lower truncation points lead to FE (uilyo =
—4,2?> =0.01) = 0.0185, which has a corresponding efficiency value of 0.982.
Thus, these prior settings accommodate a wide range of efficiency distributions.
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