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INTRODUCTION

The regression discontinuity (RD) design was introduced by Thistlethwaite
and Campbell (1960) more than 50 years ago, but has gained immense pop-
ularity in the last decade. Nowadays, the design is well known and widely
used in a variety of disciplines, including (but not limited to) most fields of
study in the social, biomedical, behavioral, and statistical sciences. Many
economists and other social scientists have devoted great efforts to advance
the methodological knowledge and empirical practice concerning RD
designs. Early reviews and historical perspectives are given by Cook (2008),
Imbens and Lemieux (2008), and Lee and Lemieux (2010), but much prog-
ress has taken place since then. This volume of Advances in Econometrics
seeks to contribute to this rapidly expanding RD literature by bringing
together theoretical and applied econometricians, statisticians, and social,
behavioral, and biomedical scientists, in the hope that these interactions
will further spark innovative practical developments in this important and
active research area.

This volume collects 12 innovative and thought-provoking contributions
to the RD literature, covering a wide range of methodological and practical
topics. Many of these chapters touch on foundational methodological issues
such as identification and interpretation, implementation, falsification testing,
or estimation and inference, while others focus on more recent and related
topics such as identification and interpretation in a discontinuity-in-density
framework, empirical structural estimation, comparative RD methods, and
extrapolation. Considered together, these chapters will help shape methodo-
logical and empirical research currently employing RD designs, in addition to
providing new bases and frameworks for future work in this area.

The following sections provide a more detailed discussion of the 12 con-
tributions forming this volume of Advances in Econometrics. To this end,
we first give a very brief overview of the state-of-the-art in the analysis and
interpretation of RD designs by offering a succinct account of the RD liter-
ature. Although our overview covers a large number of classical and recent
papers, it is surely incomplete, as this literature continues to grow and
expand rapidly. Our goal here is not to provide a comprehensive review of
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the literature, but rather to set the ground for describing how each of the
contributions in this volume fits in the broader RD literature.

Overview of the Literature

The RD design is arguably one of the most credible and internally valid
non-experimental research designs in observational studies and program
evaluation. The key distinctive features underlying all RD designs are that,
for each unit under study, (i) treatment is assigned based on an observed
variable Xi, usually called running variable, score or index, and (ii) the con-
ditional probability of treatment status, which equals the probability of
treatment assignment under perfect compliance, changes abruptly or discon-
tinuously at a known cutoff value c on the support of the running variable.
Therefore, in RD designs, treatment assignment occurs via hard-thresholding:
each unit is assigned to the control group if Xi < c, and to treatment group if
Xi ≥ c. The most standard RD setting also assumes that the running variable
is continuously distributed in a neighborhood of the cutoff value, with a
positive density. In this canonical RD framework, the two basic parameters
of interest are the average treatment effect at the cutoff (interpreted as an
intention-to-treat parameter under non-compliance), and the probability
limit of a two-stage treatment effect estimator at the cutoff when compliance
is imperfect (interpreted as a local average treatment effect at the cutoff
under additional assumptions). Most popular estimation and inference
methods in applied work rely on local polynomial regression techniques
based on large sample approximations.

Many departures from the canonical RD design have been proposed in the
literature, spanning a wide range of possibilities. For example, researchers have
considered different RD designs (e.g., multi-cutoff RD or geographic RD), dif-
ferent population parameters (e.g., kink RD or distributional RD), different
estimators and inference procedures (e.g., randomization inference or empirical
likelihood), and even different departures from the underlying canonical
assumptions (e.g., measurement error or discretely valued running variable).
Furthermore, many new methodologies have been developed in recent years
covering related problems such as graphical presentation techniques, falsifica-
tion/validation methods, and treatment effect extrapolation approaches.

Our succinct overview of the classical and recent literature on RD designs
is organized in four main categories: (i) Identification, Interpretation, and
Extrapolation; (ii) Presentation, Falsification, and Robustness Checks; (iii)
Estimation and Inference; and (iv) Software. We then summarize and
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discuss the new contributions in this volume of Advances in Econometrics by
placing them in context relative to these four categories and the associated
references.

Finally, a large list of references to empirical applications employing
RD designs may be found in Lee and Lemieux (2010), Cattaneo, Keele,
Titiunik, and Vazquez-Bare (2016, supplemental appendix), and references
therein.

Identification, Interpretation, and Extrapolation

Hahn, Todd, and van der Klaauw (2001) were the first to formally discuss
identification of average treatment effects at the cutoff in the so-called
Sharp and Fuzzy RD designs, that is, in RD settings with perfect and
imperfect treatment compliance, respectively. They employed the potential
outcomes framework to analyze the RD design, and gave conditions based
on continuity of conditional expectation functions at the cutoff, guarantee-
ing large sample identification of the treatment effect parameters of interest.
Lee (2008) also studied identification in sharp RD designs, focusing on the
interpretation of the estimand in a context where imperfect manipulation of
the running variable prevents units from precisely sorting around the cutoff
determining treatment assignment. In his imperfect manipulation setting,
Lee established continuity of conditional expectations and distribution func-
tions, and offered an heuristic interpretation of RD designs as local random-
ized experiments. Together, these two cornerstone contributions provided
general frameworks for analyzing and interpreting RD designs, which led to
widespread methodological innovation in the RD literature.

Building on the above potential outcomes frameworks, and therefore
focusing on large sample identification of average treatment effects at the
cutoff via continuity assumptions on conditional expectations, more recent
work has studied identification and interpretation of treatment effects in
other RD designs. For example, Papay, Willett, and Murnane (2011) focus
on RD designs with two or more running variables, Keele and Titiunik
(2015) analyze geographic RD designs, Card, Lee, Pei, and Weber (2015)
study regression kink designs (giving a causal interpretation to kink RD
designs), Chiang and Sasaki (2016) focus on quantile kink RD designs,
Cattaneo et al. (2016) investigate RD designs with multiple cutoffs, Choi
and Lee (2016) consider interactions and partial effects in RD settings with
two running variables, and Caetano and Escanciano (2015) exploit the
presence of additional covariates to identify RD marginal effects. See also
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Calonico, Cattaneo, Farrell, and Titiunik (2016) for a discussion of the
potential benefits and pitfalls of employing additional pre-intervention cov-
ariates in the RD design. Many other empirical problems are at present
being placed in the context of, or formally connected to, different variants
of the RD design.

Cattaneo, Frandsen, and Titiunik (2015) present an alternative causal
framework to analyze RD designs, introducing and formalizing the notation
of local randomization. This framework is conceptually and methodological
distinct from the more standard continuity-based framework employed by
the papers discussed previously. In their local randomization framework,
the goal is to formalize the idea of a local randomized experiment near the
cutoff by embedding the RD design in a classical, Fisherian causal model,
thereby giving interpretation and justification to randomization inference
and related classical experimental methods. This alternative approach was
later extended by Cattaneo, Titiunik, and Vazquez-Bare (2017a), where
methodological and empirical comparisons between the two causal inference
frameworks (continuity and local randomization) are also given.

Finally, a very recent strand of the RD literature has focused on the impor-
tant question of extrapolation. It is by now well recognized that an important
limitation of modern identification approaches at or near the cutoff is that the
resulting estimates and inference results are not easily transferable to other
populations beyond those having running variables near the cutoff. There are
now a few recent papers trying to address this issue: Angrist and Rokkanen
(2015) employ a local conditional independence assumption to discuss extrap-
olation via variation in observable characteristics, Dong and Lewbel (2015)
look at local extrapolation via marginal treatment effects and an exclusion
restriction in a continuity-based RD framework, Cattaneo et al. (2016) exploit
variation in multiple cutoffs to extrapolate RD treatment effects also using an
exclusion restriction in a continuity-based RD framework, Bertanha and
Imbens (2016) exploit variation induced by imperfect compliance in fuzzy RD
designs, Cattaneo, Keele, Titiunik, and Vazquez-Bare (2017) exploit variation
in multiple cutoffs but allowing for possible selection into cutoffs, and
Rokkanen (2016) employs a factor model for extrapolation of RD treatment
effects.

Presentation, Falsification, and Robustness Checks

One of the main virtues of the RD design is that it can be easily and
intuitively presented and falsified in empirical work. Automatic, optimal
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graphical presentation via RD Plots is discussed and formally studied in

Calonico, Cattaneo, and Titiunik (2015a). These recent methods offer

graphical tools for summarizing the RD design as well as for informally

testing its plausibility, which can also be done formally using some of the

estimation and inference methods discussed further below.
McCrary (2008) proposed a very interesting and creative falsification

method specifically tailored to RD designs. This falsification test looks at

whether there is a discontinuity in the density of the running variable near

the cutoff, the presence of which is interpreted as evidence of “manipula-

tion” or “sorting” of units around the cutoff. This test is implemented

empirically by comparing the estimated densities of the running variable

for control and treatment units separately. McCrary’s originally implemen-

tation used smoothed-out histogram estimators via local polynomial tech-

niques. More recently, Otsu, Xu, and Matsushita (2014) proposed a density

test based on empirical likelihood methods, and Cattaneo, Jansson, and

Ma (2016a) developed a density test based on a novel local polynomial den-

sity estimator that avoids preliminary tuning parameter choices.
Another more standard, but also quite common, falsification approach in

RD designs looks at whether there is a null RD treatment effect on pre-

intervention covariates or placebo outcomes. The presence of a non-zero RD

treatment effect on such variables would provide evidence against the design.

This idea follows standard practices in the analysis of experiments, and was

first formalized in a continuity-based framework by Lee (2008). Any estima-

tion and inference method for RD designs can be used to implement this

falsification approach, employing the pre-intervention covariate or placebo

outcome as the outcome variable. For example, the robust bias-corrected

local polynomial methods of Calonico, Cattaneo, and Titiunik (2014b) and

local randomization methods of Cattaneo et al. (2015) are readily applicable,

as well as other methods, all briefly discussed below. As a complement to

these estimation and inference methods, Canay and Kamat (2016) recently

developed a permutation testing approach for equality of control and treat-

ment distributions, and Ganong and Jäger (2016) also recently developed a

different permutation-based approach for kink RD designs.

Estimation and Inference

Local polynomial methods are by now widely accepted as the default tech-

nique for the analysis of RD designs. Global polynomial regressions
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are useful for presentation and graphical analysis (Calonico, Cattaneo, &
Titiunik, 2015a), but not recommended for actual estimation and inference
of RD treatment effects (Gelman & Imbens, 2014). See also Wing and
Cook (2013) for a related discussion of parametric methods in RD
designs.

For point estimation purposes, conventional local polynomial methods
were originally suggested by Hahn et al. (2001), and later Porter (2003) pro-
vided an in-depth large sample analysis in the specific RD context. Building
on this work, Imbens and Kalyanaraman (2012) developed mean-squared-
error (MSE) optimal bandwidth selectors for local-linear RD estimators in
sharp and fuzzy designs. Employing this MSE-optimal bandwidth selector
when implementing the corresponding local polynomial estimator gives an
MSE-optimal RD treatment effect estimator, which is commonly used in
modern empirical work.

For inference purposes, Calonico, Cattaneo, and Titiunik (2014b, CCT
hereafter) pointed out that the MSE-optimal local polynomial point
estimator cannot be used for constructing confidence intervals in RD
designs � or for conducting statistical inference more generally � because
of the presence of a first-order misspecification bias. CCT developed new
robust bias-corrected inference methods, based on both removing the first-
order misspecification bias present in the MSE-optimal RD estimator and
adjusting the standard errors accordingly to account for the additional
variability introduced by the bias correction. This new method of nonpara-
metric inference for RD designs works very well in simulations, and was
also shown to deliver uniformly valid inference (Kamat, 2017) as well as
higher-order refinements (Calonico, Cattaneo, & Farrell, 2017a, 2017b). In
addition, Calonico et al. (2017a) develop new bandwidth selection proce-
dures specifically tailored to constructing confidence intervals with small
coverage errors in RD designs. See Cattaneo and Vazquez-Bare (2016) for
an accessible discussion on bandwidth selection and related neighborhood
selection methods.

More recently, Calonico et al. (2016) studied identification, estimation
and inference of average RD treatment effects when additional pre-inter-
vention covariates are also included in the local polynomial estimation.
This paper develops new optimal bandwidth selectors and valid robust
bias-corrected inference methods valid under both heteroskedasticity and
clustering in the data.

As an alternative to local polynomial methods, researchers also employ
flexible methods near the cutoff. This approach is usually justified by assum-
ing some form of local randomization or similar assumption for some
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neighborhood near the cutoff. Building on this intuitive and commonly

employed approach, Cattaneo et al. (2015) and Cattaneo et al. (2017a) pres-

ent a formal local randomization framework for RD designs employing

ideas and methods from the classical analysis of experiments literature. For

estimation and inference, Neyman’s and Fisher’s methods are introduced

and developed for RD designs, though Fisherian inference (also known

as randomization inference) is recommended due to the likely small

sample sizes encountered in the neighborhoods near the cutoff where

the local randomization assumption is most plausible. Keele, Titiunik,

and Zubizarreta (2015) apply these ideas to geographic RD designs,

combining them with a “matching” algorithm to incorporate pre-intervention

covariates.
The methods above focus on estimation and inference of average treat-

ment effects at or near the cutoff, under either a continuity-based or ran-

domization-based framework. There are, of course, other methods (and

parameters) of potential interest in the RD literature. For example, Otsu,

Xu, and Matsushita (2015) discuss empirical likelihood methods for aver-

age treatment effects at the cutoff, Shen and Zhang (2016) discuss local

polynomial methods for distributional treatment effects at the cutoff, Xu

(2016) considers local polynomial methods for limited dependent outcome

variable models near the cutoff, Bertanha (2017) considers estimation and

inference of different average treatment effects in a multi-cutoff RD design,

and Armstrong and Kolesar (2016a, 2016b) discuss nonparametric confi-

dence interval estimation for the sharp average treatment effect at the cut-

off. All these contributions employ a continuity-based framework at the

cutoff, and therefore employ large sample approximations. In addition to

the local randomization framework discussed above, another finite sample

framework for the analysis of RD designs was recently introduced by Chib

and Jacobi (2016), who employ Bayesian methods in the context of fuzzy

RD designs.
Last but not least, some recent research has focused on different depar-

tures from the canonical assumptions employed for methodological and

practical research. For example, Lee and Card (2008) study RD designs

where the running variable is discrete and the researcher employs linear

regression extrapolation to the cutoff, Dong (2015) focuses on RD settings

where the underlying running variable is continuous but the researcher

only observes a discretized version, Lee (2017) studies the issue of classical

measurement error in the running variable, Feir, Lemieux, and Marmer

(2016) explore the consequences of having weak instruments in the context
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of fuzzy RD designs, and Dong (2017) studies the implications of non-ran-
dom sample selection near the cutoff.

Software

Many of the methodological and practical contributions mentioned above
are readily available in general purpose software in R and Stata, while
other contributions previously discussed and many of the contributions
included in this volume can also be implemented using already available
software. Calonico, Cattaneo, and Titiunik (2014a, 2015b) and Calonico,
Cattaneo, Farrell, and Titiunik (2017) give a comprehensive introduction
to software implementing RD methods based on partitioning and local
polynomial techniques, covering RD Plots, bandwidth selection, estimation
and inference, and many other possibilities. Cattaneo, Jansson, and Ma
(2016b) discuss software implementing discontinuity-in-density tests.
Cattaneo, Titiunik, and Vazquez-Bare (2016) give a comprehensive intro-
duction to software implementing RD methods based on a local randomi-
zation assumption, building on the classical analysis of experiments
literature as well as more recent related developments. Finally, Cattaneo,
Titiunik, and Vazquez-Bare (2017b) discuss power calculation and survey
sample selection for RD designs based on local polynomial estimation and
inference methods.

This R and Stata software is available at https://sites.google.com/site/
rdpackages.

Contributions in this Volume

This volume of Advances in Econometrics includes 12 outstanding chapters
on methodology and applications using RD designs. We now offer a brief
overview of each of these contributions, and discuss how they fit into the
RD literature presented previously.

Identification, Interpretation, and Extrapolation

The first six contributions in this volume are related to fundamental
issues of identification, interpretation and extrapolation in RD designs.
The first chapter, by Sekhon and Titiunik, discusses the connections and
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discrepancies between the continuity-based and randomization-based RD
frameworks � the two main paradigms for the analysis and interpretation
of RD designs. The authors introduce the different concepts in a familiar
setting where potential outcomes are random (as opposed to being fixed as
in the classical analysis of experiments literature), and then discuss at
length the issues and features of each of the two most popular conceptual
frameworks in RD designs. This chapter not only clarifies the underlying
conditions many times implicitly imposed in each of these frameworks, but
also gives the reader a unique opportunity to appreciate some of the under-
lying key differences between them.

The second chapter, by Jales and Yu, is truly thought-provoking. The
authors introduce and discuss ideas of identification and interpretation in
settings where a continuous (running) variable exhibits a discontinuity in
its probability density function. They not only review several recent empiri-
cal papers where such a situation arises naturally, but also discuss in great
detail how this reduced form feature can be used to identify useful para-
meters in several seemingly unrelated economic models. This chapter intro-
duces the reader to these ideas and, perhaps more importantly, offers a
general framework for analysis of economic situations where discontinuities
in density functions are present. This contribution will surely spike further
methodological research, both on identification as well as on estimation
and inference.

The third chapter, by Lee and McCrary, provides another intellectually
stimulating instance where identification and interpretation in RD designs
can be naturally enhanced by employing economic theory. This outstand-
ing chapter not only was (when originally written) one of the first to report
a credible zero causal treatment effect of incarceration on recidivism, but
also provides two remarkable and highly innovative methodological contri-
butions. First, it illustrates how modern methodology in RD designs can be
successfully adapted to incorporate the specific features of the empirical
problem at hand (i.e., sample selection and non-random censoring).
Second, it shows how an economic model can be used, together with
reduced form estimates from the RD design, to estimate interesting and
useful structural parameters, thereby offering a tight connection between
reduced form and structural methods in RD contexts.

The fourth and fifth chapters in this volume are closely related to each
other, both focusing on different aspects of geographic RD designs. The
chapter by Keele, Lorch, Passarella, Small, and Titiunik offers an overview
of research designs based on a geographically discontinuous treatment
assignment leading to adjacent treated and untreated areas. The authors
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discuss how the availability of geo-referenced data affects the ability of
researchers to employ this type of design in a pure (two-dimensional) RD
framework. When researchers have access to the exact geographic location
of each individual observation, the geographically discontinuous treatment
assignment can be analyzed in a standard RD setup. In contrast, when infor-
mation about geographic location is only available for aggregate units, these
designs are better analyzed as RD designs with discrete running variables, if
the aggregate units are sufficiently small, or otherwise as geographic “quasi-
experiments,” possibly after controlling for observable characteristics. The
discussion and underlying issues are illustrated with an empirical application,
which shows some of the acute internal validity challenges that are typical in
research designs based on geographically discontinuous treatments (e.g.,
treated and control units continue to have systematic differences even after
adjusting for observables or considering only geographically close units).

The chapter by Galiani, McEwan, and Quistorff illustrates similar inter-
nal validity challenges in geographic-quasi experiments, and also discusses
challenges related to their external validity. To study both types of threats,
the authors use data from an experimental study in development economics
as benchmark. Their empirical study focuses on various geographic designs
that compare treated units close to municipal borders to both experimental
and non-experimental untreated groups. This analysis shows that the geo-
graphic quasi-experiment is unable to recover the experimental benchmark.
This is related to both internal and external validity threats. First, there is
empirical evidence of location-based sorting on observed (and possibly
unobserved) variables, as treated and control units appear systematically
different in at least one important covariate � this raises concerns about
internal validity. Second, the exclusion of units far from the border in the
geographic-quasi experiment is shown to lead to a covariate distribution
that differs from the covariate distribution in the experimental sample.
Because some of these covariates are potential moderators of the treatment
effect, this raises concerns about the external validity of the geographic
quasi-experiment effect. In sum, the discussion and results in Keele et al.
and Galiani et al. suggest that research designs based on geographically
discontinuous treatments offer exciting opportunities to evaluate policies
and programs, but they are also vulnerable to considerable internal and
external validity challenges, setting the ground for much needed future
research in this area.

The sixth contribution, by Tang, Cook, Kisbu-Sakarya, Hock, and
Chiang, focuses on the Comparative RD design, a recently introduced
methodology that incorporates a placebo outcome variable to improve
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extrapolation of average treatment effects in sharp RD designs, in addition

to aiding parametric estimation and inference. The authors present an

insightful review of this novel methodology, and also illustrate its main

practical features by employing an empirical application with an underlying

randomized controlled trial component. This new methodology employs

global parametric methods coupled with an outcome variable unaffected by

treatment but observed over the full support of the running variable, to

improve efficiency in parametric estimation and extrapolation in RD

designs. In their empirical application, the Comparative RD design meth-

odology performs well when compared to the results from the randomized

controlled trial component.

Presentation, Falsification, and Robustness Checks

Two chapters in this volume are related to falsification and robustness

checks in RD designs. The chapter by Frandsen investigates how the idea

underlying the widely used McCrary’s density discontinuity test for manipu-

lation can be adapted and employed in settings where the running variable

is discrete. This is a very important question, as many RD designs employ

discrete running variables. The author develops a new manipulation test

that employs finite sample distributional methods and is justified via large

sample approximations and bounds on the underlying smoothness of

unknown functions. This novel manipulation test complements existing

tests, most of which are only valid when the running variable is continuously

distributed, as well as the simple binomial tests also widely used in practice.
A second contribution in this volume to robustness checks in RD

designs (and, by implication, extrapolation) is the chapter by Cerulli,

Dong, Lewbel, and Poulsen. The authors introduce and discuss a new test

for local stability of RD treatment effects. In particular, this chapter

proposes to test for zero slope change in the average treatment effect at

the cutoff, which is effectively equivalent to testing for a null kink RD

treatment effect. The authors then argue that, whenever there is no change

in the treatment effect of interest relative to the running variable near the

cutoff, the usual sharp treatment effect is more stable and hence provides

a more global result for units near the cutoff. A key feature of this idea is

that it can be implemented quite easily using available modern methods for

RD estimation and inference, which will surely contribute to the popularity

of this test in empirical applications.
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Estimation and Inference

The last four chapters in this volume focus attention on different aspects of
estimation and inference in RD designs. In all cases, these chapters take a
continuity-based approach, employ local polynomial methods, and either
assess the empirical properties of recently proposed methods in the litera-
ture or develop new methods in practically relevant settings.

First, the chapter by Card, Lee, Pei, and Weber offers an insightful and
thorough empirical study of the finite sample properties of the robust bias-
corrected inference methods proposed by Calonico, Cattaneo, and Titiunik
(2014b, CCT) in the context of regression kink designs (and, more generi-
cally, kink RD designs). Their paper offers several valuable lessons for
practitioners hoping to employ the most recent methodological innovations
in the RD design literature. In particular, the authors bring attention to
issues related to (i) choice of polynomial order, (ii) bandwidth selection
methods, and (iii) potential lack of precision of robust methods. These find-
ings are not only important for empirical work, but also set the ground for
future research and further methodological improvements.

Second, the chapter by Bartalotti and Brummet studies bandwidth selec-
tion for point estimation and inference when robust bias-correction meth-
ods are used, in a setting where generic clustering among units is possibly
present. Building on CCT’s recent work under random sampling, the
authors develop a new MSE expansion for sharp RD designs under general
clustering, and employ this approximation to obtain a new MSE-optimal
bandwidth under clustered data. This bandwidth choice is different from
the standard MSE-optimal choice obtained under random sampling, and
can be used to construct an MSE-optimal RD local polynomial point esti-
mator under general clustering. The authors also discuss the special case of
clustering at the running variable level, which is common in empirical work
and leads to important simplifications in the methodology. These new
methods are highly relevant and very useful for empirical work employing
RD designs.

Third, the chapter by Bartalotti, Calhoun, and He introduces a bootstrap
inference method based on robust bias-correction techniques. Building on
CCT’s robust bias-correction approach, the authors develop a double wild
bootstrap method where the first layer of bootstrap is used to approximate
the misspecification bias and the second-layer is used to compute valid
variance and distributional approximations taking into account the bias-
correction first step. The authors also show that the first bootstrap layer
gives a bias estimate that is equivalent to the analytic bias-correction
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proposed by CCT, up to simulation error. These results are not only useful
for empirical work (i.e., they provide an alternative way of implementing
CCT robust bias-correction methods), but also open the door for future
research connecting bootstrapping methods and bias-correction in other
RD designs settings (e.g., with clustered data or when including additional
covariates).

Last but not least, the chapter by Pei and Shen studies RD settings
where the running variable is measured with error, and provides alterna-
tive sufficient conditions guaranteeing identifiability of RD treatment
effects when estimated using the mismeasured assignment variable, the
treatment status, and the outcome variable. The authors study RD settings
where the running variable is either discrete or continuous, thereby
offering quite a complete analysis with wide applicability for empirical
work. These results contribute to a recent literature on this topic, and
more generally to the literature on departures from canonical assumptions
in RD designs, briefly summarized above. The issue of mismeasured run-
ning variables is quite important in practice, and this chapter not only
offers a clear introduction to this important problem, but also sets a
framework for the analysis and interpretation of RD designs with
measurement error. This chapter will surely motivate future work in this
important research area.
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ABSTRACT

We discuss the two most popular frameworks for identification, estimation
and inference in regression discontinuity (RD) designs: the continuity-
based framework, where the conditional expectations of the potential out-
comes are assumed to be continuous functions of the score at the cutoff,
and the local randomization framework, where the treatment assignment is
assumed to be as good as randomized in a neighborhood around the cutoff.
Using various examples, we show that (i) assuming random assignment of
the RD running variable in a neighborhood of the cutoff implies neither
that the potential outcomes and the treatment are statistically independent,
nor that the potential outcomes are unrelated to the running variable in
this neighborhood; and (ii) assuming local independence between the
potential outcomes and the treatment does not imply the exclusion restric-
tion that the score affects the outcomes only through the treatment
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indicator. Our discussion highlights key distinctions between “locally
randomized” RD designs and real experiments, including that statistical
independence and random assignment are conceptually different in RD
contexts, and that the RD treatment assignment rule places no restrictions
on how the score and potential outcomes are related. Our findings imply
that the methods for RD estimation, inference, and falsification used in
practice will necessarily be different (both in formal properties and in
interpretation) according to which of the two frameworks is invoked.

Keywords: Regression discontinuity; local experiment; as-if random
assignment; local randomization

The regression discontinuity (RD) design is a research strategy based on
three main components � a score or “running variable,” a cutoff, and a

treatment. Its basic characteristic is that the treatment is assigned based on
a known rule: all units receive a score value, and the treatment is offered to

those units whose score is above a cutoff and not offered to those units

whose score is below it (or viceversa).
The RD design has been available since the 1960s (Thistlethwaite &

Campbell, 1960), but its popularity has grown particularly fast in recent

years. In the last decade, an increasing number of empirical researchers

across the social and biomedical sciences has turned to the RD design to
estimate causal effects of treatments that are not, and often cannot be, ran-

domly assigned. This growth in RD empirical applications has occurred in
parallel with a rapid development of methodological tools for estimation,

inference, and interpretation of RD effects. See Cook (2008), Imbens and

Lemieux (2008), and Lee and Lemieux (2010) for early reviews, and the
introduction to this volume by Cattaneo and Escanciano for a comprehen-

sive list of recent references.
The recent popularity of the RD design was in part sparked by the work

of Hahn, Todd, and van der Klaauw (2001), who translated the design into

the Neyman�Rubin potential outcomes framework (Holland, 1986) and

offered minimal conditions for nonparametric identification of average
effects. These authors showed that, when all units comply with their

assigned treatment, the average effect of the treatment at the cutoff can

be identified under the assumption that the conditional expectations of
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the potential outcomes given the score are continuous (and other mild regu-
larity conditions). This emphasis on continuity conditions for identification
was a departure from other “quasi-experimental” research designs, which
are typically based on independence or mean independence assumptions.

In the Neyman�Rubin framework, randomized experiments are seen
as the gold standard, and quasi-experimental designs are broadly charac-
terized in terms of the assumptions under which the (nonrandom) treat-
ment assignment mechanism is as good as randomized. For example, in
observational studies based on the unconfoundedness or “selection-on-
observables” assumption, the treatment is as good as randomly assigned,
albeit with unknown distribution, after conditioning on observable cov-
ariates (Imbens & Rubin, 2015). Similarly, instrumental variables (IV)
designs can be seen as randomized experiments with imperfect compli-
ance, and difference-in-difference designs compare treatment and control
groups that, on average � and except for time-invariant characteristics
that can be removed by differencing � differ only on treatment status. In
all these cases, a treatment and a control group are well defined and,
under certain assumptions, can be compared to identify the average treat-
ment effect for the population of interest (or a subpopulation thereof).

In this context, the results derived by Hahn et al. (2001) set the RD
design apart. In contrast to most other quasi-experimental designs, RD
identification was established only for the average treatment effect at a
single point: the cutoff. This implied that, unlike differences-in-differences
or selection-on-observable designs, the RD design could not be accurately
described by appealing to a comparison between a treatment and a control
group. Given the RD assignment rule, under perfect compliance it is
impossible for treated and control units to have the same score value.
Moreover, when the running variable is continuous, the probability of
seeing an observation with a score value exactly equal to the cutoff is zero.
Thus, in the continuity-based RD setup, identification of the average treat-
ment effect at the cutoff necessarily relies on extrapolation, as there are
neither treated nor control observations with score values exactly equal to
the cutoff.

The influential contribution by Lee (2008) changed the way RD was per-
ceived, and aligned the interpretation of RD designs with experimental
(and the other quasi-experimental) research designs. Lee (2008) argued that
in an RD setting where the score can be influenced by the subjects’ choices
and unobservable characteristics, treatment status can be interpreted to be
as good as randomized in a local neighborhood of the cutoff as long as
subjects lack the ability to precisely determine the value of the score they
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receive � that is, as long as their score contains a random chance compo-
nent. Lee’s framework captured the original ideas in the seminal article by
Thistlethwaite and Campbell (1960), who called a hypothetical experiment
where the treatment is randomly assigned near the cutoff an “experiment
for which the regression-discontinuity analysis may be regarded as a substi-
tute” (Thistlethwaite & Campbell, 1960, p. 310).

The interpretation of RD designs as local experiments developed by Lee
(2008) has been very influential, both conceptually and practically. Among
other things, it established the need to provide falsification tests based on
predetermined covariates just as one would do in the analysis of experi-
ments, a practice that has now been widely adopted and has increased the
credibility of countless RD applications (Caughey & Sekhon, 2011; Eggers
et al., 2015; Hyytinen, Meriläinen, Saarimaa, Toivanen, & Tukiainen,
2015). Moreover, it provided an intuitive interpretation of the RD parame-
ter that allowed researchers to think about treatment and control groups
instead of an effect at a single point where there are effectively no
observations.

The claim that the RD treatment assignment rule is “as good as ran-
domized” in a neighborhood of the cutoff can be interpreted in at least
two ways. In one interpretation, it means that there should be no treat-
ment effect on predetermined covariates at the cutoff, and that the valid-
ity of the underlying RD assumptions can be evaluated by testing the null
hypothesis that the RD treatment effect is zero on predetermined covari-
ates. In another interpretation, it means that the treatment is (as good as)
randomly assigned near the cutoff, and estimation and inference for treat-
ment effects (and covariate balance tests) can be carried out using the
same tools used in experimental analysis. The first interpretation does not
imply the second because one can test for covariate balance (at the cutoff)
under the usual continuity assumptions. While the first interpretation
has resulted in an increased and much needed focus on credibility and
falsification, the second has been the source of considerable confusion.
Our goal is to discuss the source of such confusion in detail. In doing so,
we clarify crucial conceptual distinctions within the local randomization
RD framework, which in turn elucidate the differences and similarities
between this framework and the more standard continuity-based
approach to RD analysis.

We explore both the relationship between continuity and local randomi-
zation assumptions in RD designs, and the implications of adopting an RD
framework based on an explicit local randomization assumption. Our chap-
ter builds on prior studies that have considered this issue. Hahn et al. (2001)

4 JASJEET S. SEKHON AND ROCÍO TITIUNIK



first invoked a local randomization assumption for identification of RD
effects under noncompliance. More recently, Cattaneo, Frandsen, and
Titiunik (2015) formalized an analogous assumption using a Fisherian,
randomization-based RD framework, which was extended by Cattaneo,
Titiunik, and Vazquez-Bare (2016, 2017). Various super-population ver-
sions of the local randomization RD assumption were also proposed by
Keele, Titiunik, and Zubizarreta (2015) and Angrist and Rokkanen
(2015), and more recently de la Cuesta and Imai (2016) discussed the rela-
tionship between local randomization and continuity RD assumptions.

We make two main arguments. First, we show that the usual RD conti-
nuity assumptions are not sufficient for a literal local randomization inter-
pretation of RD designs � that is, not sufficient to ensure that, near the
cutoff, the potential outcomes are independent of the treatment assignment
and unrelated to the running variable. This has been argued previously
(Cattaneo et al., 2015; de la Cuesta & Imai, 2016); we simply provide a styl-
ized example to further illustrate the main issues. Second, contrary to com-
mon practice, we show that the assumption that the treatment is randomly
assigned among units in a neighborhood of the cutoff cannot be used to
justify analyzing and interpreting RD designs as actual experiments. The
restrictions imposed by the treatment assignment rule in a sharp RD design
rule out a local experiment where one randomly assigns treatment status
without changing the units’ score values. Instead, one could assume that
score values are randomly assigned in a neighborhood of the cutoff, a ran-
domization model that is consistent with the RD assignment mechanism.
However, even under this model, interpreting and analyzing the RD design
as an experiment will generally result in invalid inferences because the score
can affect the potential outcomes directly in addition to through treatment
status.

In particular, we show that (i) assuming random assignment of the RD
running variable in a neighborhood of the cutoff does not imply that the
potential outcomes and the treatment assignment are statistically indepen-
dent or that the potential outcomes are unrelated to the running variable in
this neighborhood, and (ii) assuming local independence between the
potential outcomes and the treatment assignment does not imply the exclu-
sion restriction that the score affects the outcomes only via the treatment
assignment indicator. Our discussion makes clear that the RD treatment
assignment rule need not place any restrictions on the ways in which the
score influences the potential outcomes and shows that, in local randomiza-
tion RD settings, statistical independence and random assignment are con-
ceptually different.
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The discussion that follows focuses on the sharp RD design, in which
units’ compliance with treatment assignment is perfect, and the probability
of receiving treatment changes from zero to one at the cutoff. We do not
explicitly discuss fuzzy RD settings, where compliance is imperfect and the
decision to take treatment is endogenous, because most of our arguments
and conclusions apply equally to both sharp and fuzzy RD designs. When
our discussion must be modified for the fuzzy case, we note it explicitly.
Throughout, we refer to the standard RD design based on continuity iden-
tification assumptions as the continuity-based RD design; and to the RD
design based on a local randomization assumption as the local randomiza-
tion or randomization-based RD design.

1. THE CONTINUITY-BASED RD FRAMEWORK

In this and the subsequent sections, we assume that we have a random

sample Yi 1ð Þ;Yi 0ð Þ;Xi

� �n
i¼1

, where Xi is the score on the basis of which a

binary treatment Ti is assigned according to the rule Ti ¼ 1(Xi≥ c) � or
Ti ¼ 1(Xi≤ c) depending on the example � for a known constant c, Yi(1) is
the potential outcome under the treatment condition, and Yi(0) the poten-
tial outcome under the untreated or control condition. For every unit i,
we observe either Yi(0) or Yi(1), so the observed sample is Yi;Xif gni¼1 where

Yi :¼ TiYi(1) þ (1�Ti)Yi(0). We assume throughout that all moments we
employ exist, and that the density of Xi is positive and continuous at the
cutoff or in the intervals we consider.

The continuity-based framework is based on the identification condi-
tions and estimation methods first proposed by Hahn et al. (2001). The
authors proposed the following assumption:

Assumption 1 (Continuity). The regression functions E Yi 1ð Þ∣Xi ¼ x½ �
and E Yi 0ð Þ∣Xi ¼ x½ � are continuous in x at the cutoff c.

Under this assumption, they showed that

τRDCB ≡E Yi 1ð Þ � Yi 0ð Þ∣Xi ¼ c½ � ¼ lim
x↓c

E Yi∣Xi ¼ x½ � � lim
x↑c

E Yi∣Xi ¼ x½ �: ð1Þ

Thus, when the focus is on mean effects, the target parameter in the

continuity-based RD framework is τRDCB � the average treatment effect at

cutoff. The identification result in Eq. (1) states that, under continuity, this
parameter � which depends on potential outcomes that are fundamentally
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unobservable, can be expressed as the difference between the right and

left limits of the average observed outcomes at the cutoff. Estimation

is therefore concerned with constructing appropriate estimators for

limx↑c E Yi∣Xi ¼ x½ � and limx↓c E Yi∣Xi ¼ x½ �.
The most commonly used approach to estimate these limits is to rely on

local polynomial methods, fitting two polynomials of the observed outcome

on the score � one for observations above the cutoff, the other for observa-

tions below it � using only observations in a neighborhood of the cutoff,

with kernel weights assigning higher weights to observations closer to

the cutoff. Because these fitted polynomials are approximations to the

unknown regression functions E Yi 1ð Þ∣Xi ¼ x½ � and E Yi 0ð Þ∣Xi ¼ x½ � near the

cutoff, the choice of neighborhood, commonly known as bandwidth, is

crucial. Given the order of the polynomial � typically one � the bandwidth

controls the quality of the approximation, with smaller bandwidths reduc-

ing the bias of the approximation and larger bandwidths reducing its

variance � see Cattaneo and Vazquez-Bare (2016) for an overview of RD

neighborhood selection.
Although the technical details of local polynomial estimation and infer-

ence are outside the scope of our discussion, we highlight several issues that

are central to distinguishing the continuity-based approach from the local

randomization approach we discuss next. In the continuity-based RD

design:1

• The target parameter, τRDCB, is an average effect at a single point, rather

than in an interval.
• The functional form of the regression functions E Yi 0ð Þ∣Xi ¼ x½ � and

E Yi 1ð Þ∣Xi ¼ x½ � is unknown, and is locally approximated by a polynomial
for estimation and inference.

• In general, the polynomial approximation will be imperfect. The approx-
imation error is controlled by the bandwidth sequence, hn: the smaller hn,
the smaller the error.

• Local polynomial estimation and inference are based on large-sample
results that require the bandwidth to shrink to zero as the sample size
increases. For example, consistent estimation of τRDCB requires hn → 0 and

nhn → ∞.
• Local polynomial methods require smoothness conditions on the under-

lying regression functions E Yi 0ð Þ∣Xi ¼ x½ � and E Yi 1ð Þ∣Xi ¼ x½ � in order to
control the leading biases of the local polynomial RD estimators. These
smoothness conditions are stronger than the continuity assumption
required for identification of τRDCB.
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• The bandwidth hn plays no role in the identification of τRDCB.
• Neither the continuity assumptions required for identification nor the

smoothness assumptions required for estimation and inference are
implied by the RD treatment assignment rule. See Sekhon and Titiunik
(2016) for further discussion.

1.1. Continuity Does Not Imply Local Randomization

We now consider a stylized example that shows that continuity of the
potential outcomes regression functions (as in Assumption 1) does not
imply that the treatment can be seen as locally randomly assigned in a lit-
eral or precise sense. We assume that we have a sample of n students who
take a mathematics exam in the first quarter of the academic year. Each
student receives a test score Xi in the exam, which ranges from 0 to 100,
and students whose grade is equal to or below 50 receive a double dose of
algebra instruction (Ti ¼ 1) during the second quarter � while students
with Xi> 50 receive a single dose (Ti ¼ 0). The outcome of interest is the
test score Yi obtained in another mathematics exam taken at the end of the
second quarter, also ranging between 0 and 100. We assume that test scores
are fine enough so that they have no mass points and can be treated as con-
tinuous random variables.

To illustrate our argument, we assume that a student’s expected grade in
the second quarter under the control condition given her score in the first
quarter, E Yi 0ð Þ∣Xi½ �, is simply equal to her score in the first quarter, Xi. We
also assume that the double-dose algebra treatment effect, τ, is constant for
all students. The potential outcomes regression functions are therefore:

E Yi 0ð Þ∣Xi½ � ¼ Xi;

E Yi 1ð Þ∣Xi½ � ¼ Xi þ τ:
ð2Þ

This model is of course extremely simplistic, but we adopt it because it
allows us to illustrate the difference between the treatment assignment
mechanism and the outcome model in a straightforward way. We now
assume that the initial grade Xi is entirely determined by each student’s
fixed inherent (and unobservable) ability ai � for example, Xi ¼ g(ai) for
some strictly increasing function g(⋅). Given this setup, the assignment of
treatment according to the rule 1(Xi≤ 50) is as far from random as can be
conceived, since it assigns all students of lower ability to the treatment
group and all students of higher ability to the control group, inducing
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a complete lack of common support in the distribution of ability between
the groups. Despite this severe selection into treatment based on ability,
the effect of the treatment at the cutoff is readily identifiable, because the
regression functions in Eq. (2) are continuous at the cutoff (and everywhere

else).
In this context, what does it mean to say that the RD design induces

as-if randomness near the cutoff? No matter how small the neighborhood
around the cutoff, the average ability in the control group is always
higher than in the treatment group: the effect of X on E Yi jð Þ∣Xi½ � near the
cutoff is always nonzero � dE[Yi(j)∣Xi ¼ x]/dx ¼ 1 for j ¼ 0, 1 and for all

x. Thus, the continuity of the regression functions is entirely compatible
with a very strong relationship between outcome and score. This means
that continuity is not sufficient to guarantee the comparability of units
on either side of the cutoff, even in a small neighborhood around it. In
other words, for any w > 0, one can always conceive a data generating

process such that the distortion induced by ignoring the relationship
between X and Y in the window [c�w, c þ w] is arbitrarily large (a
uniformity argument).

Thus, from an identification point of view, it is immediate to see that the
continuity condition in Assumption 1 (which ensures identification in the
super population) does not imply that the usual finite-sample “random

assignment” identification assumptions hold. We will discuss the latter type
of assumptions in detail in the following section, but we now consider one
possibility in the context of the example in Eq. (2). Imagine that in this
example we wish to invoke a mean independence assumption in a small
neighborhood W ¼ [c�w, c þ w] around the cutoff, with w > 0, such as

E Yi jð Þ∣Ti;Xi ∈W½ � ¼ E Yi jð Þ∣Xi ∈W½ � for j ¼ 0, 1; recall that in this example
Ti ¼ 1(Xi≤ c).

Focusing, for example, on the potential outcome under control, and
given Eq. (2), we have

E Yi 0ð Þ∣Ti ¼ 0;Xi ∈W½ � ¼ E Yi 0ð Þ∣Xi > c;Xi ∈ c� w; cþ w½ �½ �
¼ E Yi 0ð Þ∣Xi ∈ c; cþ wð �½ �
¼ E Xi∣Xi ∈ c; cþ wð �½ �

and

E Yi 0ð Þ∣Xi ∈W½ � ¼ E Yi 0ð Þ∣Xi ∈ c� w; cþ w½ �½ �
¼ E Xi∣Xi ∈ c� w; cþ w½ �½ �:
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In general, E Xi∣Xi ∈ c; cþ wð �½ �≠E Xi∣Xi ∈ c� w; cþ w½ �½ �, so the mean
independence assumption that is typically invoked in experiments cannot be

invoked in this case. In other words, this example shows that the continuity
assumption is not enough to guarantee independence between the potential

outcomes and the treatment near the cutoff, and consequently cannot be
used to justify analyzing an RD design as one would analyze an experiment.

From an estimation point of view, imagine that we mistakenly decided

to analyze this valid continuity-based RD design as an experiment in the
fixed neighborhood [c�w, c þ w] around the cutoff, defining the parameter

of interest as the average treatment effect in this window. To calculate this
effect, we would simply compare the average treated�control difference in

the observed outcomes in [c�w, c þ w]. Unsurprisingly, this approach
would lead to an incorrect answer, since

E Yi∣c� w≤Xi ≤ c½ � � E Yi∣c<Xi ≤ cþ w½ �
¼ τ þ E Xi∣c� w≤Xi ≤ c½ � � E Xi∣c<Xi ≤ cþ w½ �
< τ;

where the last line follows from E Xi∣c� w≤Xi ≤ c½ � � E Xi∣c<Xi ≤ cþ w½ �
∈ �2w; 0½ Þ and the assumption that the density of the score is positive and
continuous in [c – w, c + w].2 Thus, for any fixed window W ¼ [c�w, c þ
w], analyzing this RD design as one would analyze an experiment will lead
to an incorrect treatment effect estimate.

In this example, the smaller w, the closer the naive difference-in-means

estimate will be to the true effect τ. However, as we discuss below, in order
for the local randomization RD framework to be conceptually distinct

from the continuity-based framework, the neighborhood W must necessar-
ily be conceived as fixed. And, given a fixed W, the lack of comparability

between treated and control groups cannot be eliminated by increasing the

sample size � a direct consequence of the fact that such lack of comparabil-
ity is an identification problem rather than an estimation one.

In contrast, in the continuity-based framework, focusing on the average
treated�control outcome difference in a neighborhood of the cutoff can be

understood as approximating the unknown potential outcomes regression
functions with a local constant fit. Such strategy will result in a possibly

large approximation error; however, the error is entirely due to the estima-

tion strategy and will vanish asymptotically. In this fundamental sense, an
RD design based on a continuity assumption cannot be interpreted literally

as a local experiment. In other words, assuming the conditional regression
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functions E Yi 1ð Þ∣Xi½ � and E Yi 0ð Þ∣Xi½ � are continuous in Xi at c is not enough

to treat the RD design as a pure experiment near the cutoff. If we are to

treat the RD design as a local experiment, we must effectively fix a window

width, and thus change the parameter of interest.

2. THE LOCAL RANDOMIZATION RD FRAMEWORK

The simple example above shows that continuity of the conditional regres-

sion functions is not enough to justify analyzing or interpreting the RD

design as an experiment in a neighborhood of the cutoff. We now consider

a local randomization RD setup where we explicitly assume that the treat-

ment is randomly assigned for all subjects with Xi ∈ [c�w, c þ w]. As we

discuss, formalizing precisely the local randomization RD framework is dif-

ficult, because the notion of random assignment near the cutoff can be

interpreted in different ways.

2.1. Local Randomization of Score or Treatment?

Intuition suggests that simply assuming that the treatment is randomly

assigned in a small neighborhood around the cutoff should be enough to

analyze the RD design as a local experiment. However, this is not the case

for two reasons: (i) the RD treatment assignment rule places strict restric-

tions on the type of random assignments that are conceivable, and (ii) the

assignments that are conceivable do not imply an exclusion restriction that

is always true in actual experiments.
We consider two possible scenarios, according to two different interpre-

tations of what it means for the treatment to be locally randomly assigned.

In the first scenario, the values of Xi stay constant but the treatment

received is randomly changed for subjects near the cutoff. In the second

scenario, the value of Xi is randomly assigned for all subjects near the cut-

off. As we show, this is an important distinction that must be considered

when formalizing the local randomization RD assumption.

2.1.1. Scenario 1: Treatment Status Randomly Assigned for all Subjects
Near the Cutoff
The first way to understand locally random treatment assignment in the

RD context is to imagine a situation where all subjects with score in
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a neighborhood of the cutoff � that is, with Xi ∈ [c�w, c þ w] � are ran-

domly assigned to receive treatment or control. In the context of our educa-

tion example introduced in the previous section, we could accomplish this

if, for example, we randomly assigned all students who scored between 45

and 55 in the first exam to receive either a single or double dose of algebra,

with every student receiving double dose with the same positive probability.

Given our assumption that the test score in the first quarter is entirely

determined by the students’ ability, this assignment mechanism would

break the relationship between ability and treatment status induced by the

RD rule 1(Xi≤ 50), because it would make receiving the treatment entirely

independent of the grade obtained in the first exam.
However, this way of conceptualizing the randomization implies that the

score Xi is unrelated to treatment status in the local neighborhood, which is

incompatible with the treatment assignment rule. In particular, this assign-

ment would imply a positive number of both treated and control subjects

on each side of the cutoff in the neighborhood [c�w, c þ w], contradicting

the RD treatment assignment rule 1(Xi≤ c). This illustrates the general

point that, in a sharp RD design, treatment status is deterministic given the

score, and thus it is not possible to randomly assign the treatment without

altering the values of the running variable.3

2.1.2. Scenario 2: Score Value Randomly Assigned for All Subjects
Near the Cutoff
The alternative is to assume that the running variable, not treatment status,

is randomly assigned near the cutoff � a manipulation that would be consis-

tent with the sharp RD treatment rule. There are multiple ways in which one

could conceive of such an experiment. For example, following our double-

dose algebra example, we might believe that, even though exam performance

is broadly influenced by ability, the precise grade received by each student

involves some degree of randomness and arbitrariness, such that students

whose grades are ten points or less apart should be of comparable ability.

The school may therefore implement a two-stage process, where first all

exams are graded, and for those students whose grades fall between 45 and

55, the original score is replaced with a uniform random number between 45

and 55. The justification for this two-stage procedure might be that it still

assigns the treatment to those students who most need it (all students who

get very low grades are guaranteed to receive the treatment) but it implements

a transparent and fair process to assign the treatment to those students very

near the cutoff whose observable characteristics may be indistinguishable.
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Under this setup, the test score in the first exam, Xi, is still broadly
determined by ability � so that a student who obtains a grade of 25 is on
average of lower ability than a student who obtains a grade of 90 � but for
two students whose grades are between 45 and 55, the second stage ensures
that they have the same ex-ante probability of receiving treatment. This
hypothetical random assignment of score values implies that the average
level of ability (and any other predetermined confounder) of treated
students with Xi ∈ [45, 50] is the same as for control students with Xi ∈
[50, 55]. Note that this setup also assumes that the score Xi collected by the
researcher is the second stage score for all students, so that the treatment
rule 1(Xi≤ 50) correctly distinguishes treated and control students. Such a
two-stage rule is of course artificial, although a second-stage randomization
has been used in some actual RD settings (Hyytinen et al., 2015).4

The crucial question is whether the assumption that the value of the
score is (as-if) randomly assigned in a neighborhood of the cutoff � that is,
the assumption that all units with score in [c�w, c þ w] have the same
probability of receiving any score value x within this neighborhood and
therefore the same probability of receiving treatment or control � is
enough to justify analyzing and interpreting the RD design in this neigh-
borhood as an actual experiment. At first glance, it might appear as if it is.
We are assuming that, among units in a local neighborhood of the cutoff,
the value of the score is randomly assigned; since the treatment is determin-
istically assigned based on this score, this guarantees that, on average, there
are no differences in the predetermined characteristics of units above and
below the cutoff within this window.

However, this reasoning ignores the possibility that the score itself may
affect the potential outcomes, a phenomenon we have explicitly allowed in
our example in Eq. (2). When we introduced this equation, we motivated it
by imagining that students’ unobservable ability affects both the grade
obtained in the first exam, Xi, and the grade obtained in the second exam,
Yi. Our new assumption that the score is unrelated to students’ predeter-
mined characteristics in the neighborhood [45, 55] might seem at first to
imply that the running variable must be unrelated to the regression func-
tions in this neighborhood, as illustrated in Fig. 1(a). However, if the run-
ning variable Xi affects the potential outcomes through factors other than
predetermined characteristics, the regression functions can follow Eq. (2)
even when Xi is randomly assigned in a window around the cutoff � this
situation is illustrated in Fig. 1(b).

A more precise way to denote the potential outcomes would be
Yi(Ti, Xi), where the first argument captures the effect of the treatment
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assignment � that is, of being on one side of the cutoff or the other � and

the second argument captures the effect of the running variable on the out-

come that occurs independently of the treatment status. This “direct” effect

of Xi on Yi would occur in our example if, for instance, a student’s test score

in the first exam had a reinforcing effect. If near the cutoff students who

receive lower test scores were discouraged and put less effort in the second

exam than students who receive higher scores (because, e.g., they feel stig-

matized by being assigned to the treatment group and are frustrated by

having been so close to the cutoff), Xi might be positively associated with

the potential outcomes even in the absence of a treatment effect. Under this

assumption, the model in Eq. (2) and Fig. 1(b) could still be true even if the

score were randomly assigned in [45, 55].
Another way to see the distinction is to note that any simple experiment

can be seen as an RD design in which the score is a random number and

the cutoff is chosen to ensure the desired probability of treatment assign-

ment. In our example, if instead of having instructors grade the exams we

assigned each student a uniform random number between 0 and 100, the

treatment assignment rule 1(Xi≤ 50) would effectively become a rule that

assigns double-dose algebra entirely randomly among students, with each

student having a 50% probability of receiving treatment. In this case, how-

ever, there would be no need to add an extra argument in the regression

functions for the random number that determines treatment, as the

score used to randomly assign treatment would be a computer-generated

pseudo-random number that is unrelated to the potential outcomes by

construction.5
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Fig. 1. Two Scenarios with Randomly Assigned Score. (a) Test Scores Locally

Unrelated to Potential Outcomes. (b) Test Scores Locally Related to Potential

Outcomes.
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In contrast, in an RD design where the score is assumed to be randomly
assigned in the local neighborhood [c�w, c þ w] but is not an arbitrarily gen-
erated number unrelated to the phenomena under study, nothing prevents
the value of the running variable from affecting the potential outcomes
directly. In other words, local random assignment of Xi does not guarantee
the exclusion restriction that we typically take for granted in actual random-
ized experiments. This illustrates the distinction between assumptions about
the assignment of the score Xi, and assumptions about the shape of the
regression functions: assumptions about the law of the random variable Xi

place no restrictions on the functions E Yi 1ð Þ∣Xi½ �, and E Yi 0ð Þ∣Xi½ �.
Note also that this phenomenon is analogous to the IV design, where

random assignment of the instrument does not imply the exclusion restric-
tion that is required to interpret the usual estimand as the average treat-
ment effect for the compliers (Angrist, Imbens, & Rubin, 1996). The
parallelism arises because in both IV and RD designs, researchers are
interested in the effect of the treatment on the outcome, but there is a third
variable (the score in RD, the instrument in IV) that induces a change in
treatment status and can also affect the potential outcomes directly. In
both cases, the way in which this third variable is assigned imposes no
general restrictions on its relationship with the potential outcomes.

The analogy between IV and fuzzy RD designs has been long recognized
in the continuity-based framework, where the similarities arise because of
imperfect compliance with the treatment assignment rule in fuzzy RD set-
tings. However, in the context of the local randomization RD framework,
similarities occur even in the sharp RD case where compliance with treatment
assignment is perfect. The analogy we point out is not related to treatment
compliance but rather to the possible role of the score (instrument) as a deter-
minant of the outcome irrespective of treatment assignment and/or status.

2.2. Formalizing the Local Randomization RD Assumption

We now attempt to formalize a local randomization RD assumption. The
first such formalization was proposed by Cattaneo et al. (2015), who used a
Fisherian randomization-based approach in which the potential outcomes
are seen as fixed as opposed to random variables. Their proposed assumption
has two parts. The first part states that the conditional distribution function
of the score in the finite sample is the same for all units in the neighborhood
of the cutoff. The second explicitly adopts an exclusion restriction that rules
out any “direct” effects of the score on the potential outcomes and states
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that, within the window, the fixed potential outcomes depend on the running

variable solely through the treatment indicator.6 As our discussion above

illustrates, the exclusion restriction plays a crucial role in the analogy between

RD designs and experiments, an issue that has not been generally recognized

by scholars outside of the Fisherian framework.
Since the continuity-based RD framework has been almost exclusively

developed within a random sampling framework in which the potential

outcomes are random variables, and the analogy between RD and experi-

ments is often understood in these terms, we formalize the local randomi-

zation assumption using the random sampling setting introduced in

Section 1. We thus retain the random sampling framework throughout the

chapter. In particular, our formalization is based on statistical indepen-

dence between the potential outcomes Yi(1) and Yi(0) and the binary treat-

ment assignment indicator in a neighborhood of the cutoff, an assumption

routinely invoked in experimental analysis and guaranteed by the random

assignment of treatment in actual randomized experiments. A condition of

this kind has been invoked in local randomization RD settings by, for

example, Angrist and Rokkanen (2015), de la Cuesta and Imai (2016), and

Keele et al. (2015).
Formally, we state this assumption as:

Assumption 2: (Super-population) Local Independence. There exists a
neighborhood around the cutoff c, W ¼ [c�w, c þ w], w > 0, such
that Yi(1), Yi(0) ╨ Ti∣Xi ∈ W, where ╨ denotes statistical indepen-
dence and Ti ¼ 1(Xi≥ c) as defined above.

Under this assumption, the average treatment effect in the window W is

identified by

τRDLR ≡E Yi 1ð Þ � Yi 0ð Þ∣Xi ∈W½ � ¼ E Yi∣Ti ¼ 1;Xi ∈W½ � � E Yi∣Ti ¼ 0;Xi ∈W½ �

If the window W is known, estimation can proceed, for example, simply

by computing a difference-in-means between treated and control groups

for observations in this window.
Under Assumption 2, the local randomization RD framework has the

following features:

• The target parameter, τRDLR, is the average treatment effect in an interval

of the support of the running variable, rather than at a point.
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• Because the focus is on an average over an interval rather than at a
point, approximation of the functional form of the regression functions
E Yi 0ð Þ∣Xi ¼ x½ � and E Yi 1ð Þ∣Xi ¼ x½ � is not necessary for estimation.

• Knowledge of the window W ¼ [c�w, c þ w] around the cutoff is neces-
sary for identification of τRDLR.

• Estimation and inference methods assume the window is fixed as the
sample size grows.

Thus, as we have defined it, the local randomization RD setup stands in

contrast to the continuity-based framework described above. We highlight

two distinctions in particular.

Remark 1 (Randomization in window vs. at the cutoff). Our charac-
terization of the local randomization RD framework is explicit in
stating a “random assignment” assumption that holds in an interval
around the cutoff rather than at the cutoff point. This is in contrast
to some formalizations of the local randomization RD framework
that make assumptions at the cutoff point. The reason we focus on
an interval rather than a point is because the requirement of statistical
independence at a point is trivial: any random variable is independent
of a constant, so the potential outcomes and the score will always be
independent at the cutoff. In other words, an assumption of randomi-
zation or independence at the cutoff has no empirical or theoretical
content, and thus cannot be used as a justification to analyze RD
designs as experiments.

Naturally, one can still use the local randomization RD interpreta-
tion simply as an approximation device, where the window is not seen
as the interval where a randomization condition holds but rather as
the interval where the unknown regression functions are approxi-
mated � see Cattaneo et al. (2015, §6.5). But used in this heuristic
way, the local randomization RD framework becomes in essence
identical to the continuity-based framework: the parameter of interest
becomes the treatment effect at the cutoff, and identification and esti-
mation results are ultimately based on some kind of continuity condi-
tion (Canay & Kamat, 2016; Lee, 2008). ’

Remark 2 (The Role of Neighborhood). If the local randomization
RD framework is understood in terms of a fixed window as in
Assumption 2 and not as the heuristic approximation discussed in
Remark 1, the role of the neighborhood in this approach is conceptu-
ally different from the role of the bandwidth in the continuity-based
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framework. In the latter framework, the bandwidth is used to control
the bias and variance of the local polynomial approximation to the
unknown regression functions; this implies, among other things, that
optimal and valid estimation and inference will require choosing a
different bandwidth for every outcome variable or covariate analyzed.
In contrast, in the local randomization RD framework based on an
assumption such as Assumption 2, the window is a fundamental piece
of the research design, since it is the interval where the required iden-
tification assumption holds. Consequentially, in the local randomiza-
tion framework, this single window is used to perform estimation and
inference for all outcomes and covariates. See Cattaneo and Vazquez-
Bare (2016) for further details on the role of neighborhood selection
in RD estimation and inference. ’

3. THE DIFFERENCE BETWEEN RANDOM

ASSIGNMENT AND INDEPENDENCE IN RD

CONTEXTS

We now consider whether Assumption 2 is implied by the random assign-
ment of the score near the cutoff and whether it implies that the exclusion

restriction is satisfied in the RD context. An in depth consideration of these
issues reveals subtle relationships between the concepts of random treat-

ment assignment, statistical independence, and exclusion restriction in RD
settings. Our discussion makes three main points: (i) the random assign-
ment of the score does not imply local independence between treatment

assignment and potential outcomes; (ii) the local statistical independence
between treatment assignment and potential outcomes does not imply the

exclusion restriction that holds by construction in experiments; and (iii) an
experimental analysis is possible under local independence if the exclusion

restriction fails, provided that the interpretation of the parameter is modi-
fied accordingly.

3.1. Random Assignment of Score Does Not Imply
Local Independence

The local independence assumption as stated in Assumption 2 is not
guaranteed to hold when we randomly assign the score near the cutoff �
that is, when all subjects with c�w≤Xi≤ c þ w face the same ex-ante
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probability of receiving every value of the score between c�w and c þ w.

The reason is that, even if all subjects in the neighborhood of the cutoff

have the same marginal distribution of the running variable, the poten-

tial outcomes and the running variable may be related in ways that

violate the local independence assumption. If, as discussed above, higher

test scores lead students to expend systematically more or less effort in

future exams, the randomly assigned value of Xi will affect the potential

outcomes directly even inside the local neighborhood [c�w, c þ w],

inducing a relationship between the potential outcomes Yi(1), Yi(0)

and the treatment indicator 1(Xi≤ c) or 1(Xi≥ c) that may violate

independence.
Thus, unlike in the case of actual randomized experiments, in a local

randomization RD design in the sense of Assumption 2, statistical inde-

pendence and random assignment are conceptually different. The reason

is that, as discussed above, the implicit randomization rule in a local ran-

domization RD design does not and cannot manipulate treatment status

directly; instead, the rule must randomly assign the score values.

Therefore, if the randomly assigned score has a direct impact on the

potential outcomes � so that, for example, high values of Xi lead to high

values of the potential outcomes � the indicators 1(Xi≤ c) and 1(Xi≥ c)

may fail to be statistically independent of the potential outcomes.
To see this more formally, simply consider the example in Eq. (2) intro-

duced above. We already showed in Section 1 that this example violates

Assumption 2; now simply assume that Xi is randomly assigned in a neigh-

borhood of the cutoff, which is of course allowed by Eq. (2).

3.2. Local Independence Does Not Imply
Exclusion Restriction

Moreover, the local independence assumption as stated in Assumption 2 is

not a sufficient condition for the exclusion restriction that the score does

not affect the potential outcomes except via the treatment indicator. That

is, the local independence assumption does not imply that the score Xi and

the regression functions E Yi 0ð Þ ∣ Xi½ �, E Yi 1ð Þ ∣ Xi½ � are unrelated in a local

neighborhood of the cutoff. Graphically, this means that regression func-

tions need not be flat in the neighborhood [c�w, c þ w] even when

Assumption 2 holds; in other words, local independence does not necessar-

ily imply a scenario like the one illustrated in Fig. 1(a).
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We briefly present an example to illustrate this point. It suffices to focus
on one potential outcome, so we focus on Yi(1).

Yið1Þ ¼ 1ðXi ∈WÞ · ð1� jXi � cjÞ þ 1ðXi ∉WÞ · ð1� wÞ þ εi ð3Þ

for all i, with εi a random error independent of Xi, c the cutoff, 1(Xi≤ c) the
treatment rule, and W ¼ [c�w, c þ w] as before. The regression function
E Yi 1ð Þ∣X½ � implied by this model for Yi(1) is shown in Fig. 2. To simplify
notation, we redefine ~x :¼ x� c so that the cutoff for ~x is normalized to
zero. We also assume that the density of ~X , f ~xð Þ, is symmetric around zero
in [�w, w].

We wish to show that in this setup, which clearly violates the exclusion

restriction, the local independence assumption holds. Let ~W ¼ �w;w½ �. We

want to show

P Y 1ð Þ≤ y; ~X ≤ 0 ∣ ~X ∈ ~W
� � ¼ P Y 1ð Þ≤ y ∣ ~X ∈ ~W

� �
⋅ P ~X ≤ 0 ∣ ~X ∈ ~W
� �

:

Cutoff

1−w

1

c − w c c + w
Score (X)

E
[Y

(1
)|

X
]

Fig. 2. Example Where Exclusion Restriction Is Violated But Local Independence

Holds.
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Under the assumptions we made, we can show that

P½Yð1Þ≤ y; ~X ≤ 0 ∣ ~X ∈ ~W �
¼ P½Yð1Þ≤ y ∣ � w≤ ~X ≤ 0� ⋅ P½ ~X ≤ 0 ∣� w≤ ~X ≤w�

¼ E½ P½Yð1Þ≤ y ∣ ~X � ∣� w≤ ~X ≤ 0� ⋅ P½ ~X ≤ 0 ∣� w≤ ~X ≤w�

¼
R 0
�w

Fεðy� 1þ ∣~x∣Þ ⋅ f ð~xÞ ⋅ d~xR 0
�w

f ð~xÞ d~x
⋅
R 0
�w

f ð~xÞ d~xR w
�w

f ð~xÞ d~x

¼
1
2

R 0
�w

Fεðy� 1þ ∣~x∣Þ ⋅ f ð~xÞ ⋅ d~x þ R w
0
Fεðy� 1þ ∣~x∣Þ ⋅ f ð~xÞ ⋅ d~x

� �
R w
�w

f ð~xÞ d~x

¼
1
2

R w
�w

Fεðy� 1þ ∣~x∣Þ ⋅ f ð~xÞ ⋅ d~xR w
�w

f ð~xÞ d~x

¼ 1

2
P½Yð1Þ≤ y ∣ ~X ∈ ~W �

Since we assumed that the density of ~x is symmetric around zero in the

window, P ~X ≤ 0 ∣ ~X ∈ ~W
� � ¼ 1

2
. Thus, we have shown that in this example

P Y 1ð Þ≤ y; ~X ≤ 0 ∣ ~X ∈ ~W
� � ¼ 1

2
P Y 1ð Þ≤ y ∣ ~X ∈ ~W
� �

¼ P ~X ≤ 0 ∣ ~X ∈ ~W
� �

⋅ P Y 1ð Þ≤ y ∣ ~X ∈ ~W
� �

and therefore Y(1) and 1 ~X ≤ 0
� 	

are independent in ~W .
The most important assumptions in this example are the symmetry

of the density of the running variable Xi around the cutoff in the window

[c�w, c þ w], the independence between the error term εi and Xi in this

window, and the symmetry around the cutoff of the functional form that

relates Y(1) and X. The intuition behind the result is as follows: if X is sym-

metrically distributed in [c�w, c þ w], the value of the random variable

Y ¼ 1� ∣X� c∣ þ ε will be the same regardless of whether X > c or X< c;

being above or below the cutoff does not provide any information regard-

ing the particular value of Y(1) that will be observed. Thus, the local inde-

pendence condition between the potential outcome Yi(1) and the treatment

indicator 1(X≤ c) holds even though Y(1) and X are related.
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3.3. Experimental Analysis under Local Independence Will Capture ‘Overall’
Effect If Exclusion Restriction Fails

We have shown that local statistical independence as stated in

Assumption 2 does not guarantee that the exclusion restriction holds.

Although referring to the potential outcomes functions as Yi(1) and Yi(0)

may give the impression that these functions are only affected by the treat-

ment indicator but not the score itself, this notation is commonly used to

broadly refer to the potential outcome under the treatment and control

conditions, including everything that these conditions entail. In the

context of actual randomized experiments, it is generally unnecessary to

make the notation more explicit to let the potential outcomes depend on

the particular randomization device used. But in contexts where the

variable that induces variation in treatment assignment is an important

determinant of the potential outcomes rather than an arbitrary device,

generalizing the potential outcomes notation is necessary. For example, a

more general potential outcomes notation has been used to allow for the

direct effect of the instrument in IV setups (Angrist et al., 1996) and of the

cutoff in multi-cutoff RD setups (Cattaneo, Keele, Titiunik, & Vazquez-

Bare, 2016).
Following the notation we introduced briefly in Scenario 2 in Section 2,

we use let Yi(Ti, Xi) denote the potential outcomes, now explicitly acknowl-

edging that the potential outcomes may depend on the value of the score Xi

directly in addition to through the treatment assignment indicator. Using

this notation, Assumption 2 implies the mean independence condition

E Yi j;Xið Þ∣Ti ¼ j;Xi ∈W½ � ¼ E Yi j;Xið Þ∣Xi ∈W½ � for j ∈ {0, 1}. Given this gener-

alization, we now consider whether the local randomization RD framework

can be used in a context where Assumption 2 holds but the exclusion

restriction fails.
Even if the exclusion restriction is violated in the sense that

Yi j;Xið Þ≠Yi j;X0
i

� 	
for Xi ≠X0

i , j ∈ {0, 1}, under Assumption 2 we have

E½Yi∣Ti ¼ 1;Xi ∈W � ¼ E½Yið1;XiÞ∣Ti ¼ 1;Xi ∈W � ¼ E½Yið1;XiÞ∣Xi ∈W �;
E½Yi∣Ti ¼ 0;Xi ∈W � ¼ E½Yið0;XiÞ∣Ti ¼ 0;Xi ∈W � ¼ E½Yið0;XiÞ∣Xi ∈W �;

leading to

E Yi∣Ti ¼ 1;Xi∈W½ ��E Yi∣Ti ¼ 0;Xi∈W½ � ¼ E Yi 1;Xið Þ�Yi 0;Xið Þ∣Xi∈W½ � ¼ τRDLR:
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Thus, in a broad sense, Assumption 2 justifies analyzing the RD design

in the neighborhood of the cutoff as one would analyze an experiment

because it allows identification of the average treatment effect τRDLR.
However, if the exclusion restriction does not hold, the treated and control

average outcomes within the local window will combine the effect of the

treatment (e.g., a student receiving double-dose algebra or a party winning

an election) on the outcome, plus the additional effect of the score on the

outcome that would occur regardless of treatment status (e.g., students

who receive higher grades may feel motivated to study more, political

donors may wish to donate more money to localities where parties obtain

higher vote shares, etc.). In this case, the parameter τRDLR will not capture the

(local) average effect of the treatment alone, but rather the effect of obtain-

ing a value of the score in [c, c þ w] versus [c�w, c), which will include,

among other things, the effect of the treatment.
Using the more general notation, we can see that in a local randomiza-

tion RD design where Assumption 2 holds but the exclusion restriction

does not, the parameter τRDLR, unlike τRDCB, is not the average effect at any

single point x:

τRDLR ¼ E Yi 1ð Þ � Yi 0ð Þ∣Xi ∈W½ � ¼ E Yi 1;Xið Þ � Yi 0;Xið Þ∣Xi ∈W½ �
≠ E Yi 1; xð Þ � Yi 0; xð Þ∣Xi ∈W½ �:

Imagine, for example, that E Yi 0;Xið Þ∣Xi ∈W½ � ¼ μ0, constant for every i

in the window, and Yi(1, Xi) follows Eq. (3). In this case,

τRDLR ¼ E 1� ∣Xi � c∣∣Xi ∈W½ � � μ0 ¼
R cþw

c�w
1� ∣x� c∣ð Þf xð Þ dxR cþw

c�w
f xð Þ dx � μ0;

which will take any value between 1�w� μ0 and 1� μ0, depending on the
density of the running variable X inside the window. This example shows
that, in a scenario where the exclusion restriction fails, the average effect
τRDLR will take different values according to the likelihood of observations
concentrating in particular ranges of the running variable inside the win-
dow. For example, the same setup just described would lead to different
values of τRDLR if the observations within the window were uniformly distrib-
uted than if they were disproportionally concentrated near the cutoff.
Thus, when the exclusion restriction fails and the regression functions
are not constant in the window around the cutoff, the interpretation of
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the average effect τRDLR differs from the interpretation it would have in a
standard experiment.

4. CONCLUDING REMARKS

Our discussion highlights that the local randomization interpretation of

the RD design, if taken literally, introduces conceptual distinctions that

are absent in pure experimental designs. As we have shown, in the context

of RD designs, the distinction between random assignment and statistical

independence is consequential. This distinction is often meaningful in nat-

ural experiments (Sekhon & Titiunik, 2012). In an actual experiment,

random assignment of treatment leads to statistical independence between

treatment status and potential outcomes, because the “score” used to

randomly assign subjects is a device (likely a computer-generated pseudo-

random number) that is by construction arbitrary and unrelated to the

potential outcomes or any systematic characteristic of the experimental

subjects. As we observed, a randomized experiment can be recast as an

RD design where the score is a randomly generated number and the cut-

off is chosen to ensure the desired probability of receiving treatment.

Thus, seen as functions of this random number, the regression functions

are guaranteed to be constant (graphically flat), because the score is a ran-

domly generated number that is by construction unrelated to the potential

outcomes.
In contrast, in an RD design, the score used to assign treatment, even if its

values are randomly allocated near the cutoff, are usually important determi-

nants of the outcome of interest. Indeed, the importance of the RD score is

often what motivates using it as the basis of treatment assignment in the first

place. In a context where the score is meaningfully related to the outcome

(past and future test scores, past and future vote shares, etc.), random assign-

ment of the score value contains no information about the particular form of

the regression functions E Yi 1ð Þ∣Xi½ � and E Yi 0ð Þ∣Xi½ �. This is straightforward to

see once one realizes that restrictions on the randomization distribution of

the score Xi (and implicitly of the treatment assignment) are fundamentally

different from restrictions on the shape of the regression functions � and

more generally, on the conditional distribution of the potential outcomes

given the score. No matter how much information we have about the way in

which Xi is assigned, this information will generally be insufficient to deter-

mine how Xi and the potential outcomes are related.

24 JASJEET S. SEKHON AND ROCÍO TITIUNIK



Given the additional assumptions needed for the local randomization

interpretation to hold, in most applications one should proceed using the

continuity assumption alone. This is typically a plausible assumption if

there are neither formal nor informal mechanisms for sorting � that is, for

units to appeal and change the score value they were originally assigned in

order to receive their preferred treatment condition. However, in practice,

the methods used to estimate the continuous functions at the cutoff are

consequential. Estimation is delicate because the functional forms are

unknown, and one is estimating the trend at an endpoint (the cutoff) of

measure zero. The example in Hyytinen et al. (2015) illustrates how infer-

ences in RD designs are sensitive to the method used to estimate the contin-

uous functions on both sides of the cutoff even when sample sizes are not

small, and the design is valid by construction. More generally, the proper-

ties of RD estimation and inference based on local polynomial methods

depend crucially on the bandwidth choice; for example, the commonly used

mean-squared-error optimal bandwidth, though valid for point estimation,

is too large for inference and requires either undersmoothing or robust

methods to yield valid confidence intervals (Calonico et al., 2014). One

appeal of the local randomization interpretation of RD is that it avoids

these estimation and inference issues, but unfortunately, this interpretation

requires additional assumptions that may not be plausible.

NOTES

1. For a general treatment of local polynomial methods, see Fan and Gijbels
(1996) and Calonico, Cattaneo, and Farrell (2017) for recent higher-order results.
For local polynomial methods applied specifically to the RD case, see Hahn et al.
(2001), Porter (2003), Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and
Titiunik (2014), and Calonico et al. (2016).
2. If the treatment assignment rule were 1ðXi ≥ cÞ, which is the more common defini-

tion of the treatment in the RD literature, we would have E½Yi|c≤Xi ≤ c þ
w� � E½Yi|c� w≤Xi < c� ¼ τ þ E½Xi|c≤Xi ≤ cþ w� � E½Xi|c� w≤Xi < c�, and E½Xi|c≤
Xi ≤ cþ w� � E½Xi|c� w≤Xi < c�∈ ð0; 2w�.
3. Note that in a fuzzy RD design, it is possible to have both treated and control

observations on either side of the cutoff. However, the simple random assignment
we have described would still be incompatible with a fuzzy RD assignment because
it would assign treatment with the same probability on either side of the cutoff,
which would violate the assumption of discontinuity of the probability of treatment
assignment at the cutoff.
4. The reason we use two stages to set up a scenario where the score is randomly

assigned is because we want to create a scenario where ability � a predetermined
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characteristic � is not systematically different between treated and control groups.
Because of potential individual-level heterogeneity in ability within the window
½c� w; cþ w�, this cannot be guaranteed unless we assume a two-stage procedure or
make an explicit assumption about the distribution of ability for subjects that fall in
the neighborhood of the cutoff. Note also that the two-stage scenario ensures com-
parability of all predetermined characteristics near the cutoff, whereas a scenario
based on a single stage must consider assumptions about all possible predetermined
characteristics that affect the score.
To see this, consider the following alternative setup, where we assume that the

score is a step function of ability, such that higher ability leads to higher grades but
the relationship between both variables is constant in intervals. For example, we
might imagine Xi ¼ f(ai) þ εi, with f(ai) ¼ f(ā) for all i such that c�w≤Xi≤ c þ w.
Then,

P Ti ¼ 1≤ c ∣ c� w≤Xi ≤ cþ w½ � ¼ P Xi ≤ c ∣ c� w≤Xi ≤ cþ w½ �
¼ P f āð Þ þ εi ≤ c ∣ c� w≤Xi ≤ cþ w½ �
¼ Fε c� f āð Þ ∣ c� w≤Xi ≤ cþ wð Þ;

where Fε(⋅) is the CDF of ε, which is the same function for all individuals with
c�w≤Xi≤ c þ w. Under this setup, all individuals in the local neighborhood of the
cutoff have the same probability of receiving treatment and the same ability.
5. Note that this statement assumes that students are never informed about the

particular random “grade“ that they receive, as occurs in actual experiments.
6. Cattaneo et al. (2017) relax this restriction to allow the potential outcomes

functions to depend on the score, and use that information to adjust the potential
outcomes and build the randomization distribution of the desired test-statistic.
Their approach clarifies that one could use a finite-sample randomization-based
framework to analyze an RD design when the exclusion restriction is violated, pro-
vided one specifies a particular functional form for the potential outcome function
yiðx; tÞ.
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