Logistics Systems for Sustainable Cities
Proceedings of the 3rd International Conference on City Logistics
(Madeira, Portugal, 25-27 June, 2003)
BREWER, BUTTON & HENSHER (eds.) Handbook of Logistics and Supply-Chain Management

GIFFORD Flexible Urban Transportation

HENSHER & BUTTON (eds.) Handbook of Transport Modelling

ROOT (ed.) Delivering Sustainable Transport

TANIGUCHI et al (eds) City Logistics: Network Modelling and Intelligent Transportation Systems
PREFACE

Following the First and Second International Conferences on City Logistics that took place on 12th – 14th July 1999 in Cairns, Australia, and in Okinawa, Japan on 27th – 29th June 2001, the Institute for City Logistics organised the Third International Conference on City Logistics in Madeira, Portugal on 25th – 27th June 2003.

Urban freight transport has become an important issue in urban planning. There are many challenges and problems relating to increasing levels of traffic congestion, environmental impacts and energy conservation. In addition, freight carriers are expected to provide higher levels of service with lower costs. To address these complicated and difficult problems, numerous city logistics schemes have been proposed and implemented in several cities, including: co-operative freight transport systems, advanced information systems, public freight terminals and the regulation of load factors. City logistics schemes are relatively new concepts that are aimed increasing the efficiency of urban freight transport systems as well reducing traffic congestion and impacts on the environment. However, new modelling, evaluation and planning techniques are required to conduct in-depth investigations before city logistics schemes can be effectively deployed.

This proceedings book includes recent developments in the modelling, evaluation and planning of city logistics schemes. Since city logistics schemes have already been implemented in several cities, a review of the performance of these schemes was presented and discussed. As well, an overview of the visions for city logistics and public private partnerships for city logistics was given.

Recent developments in ICT (Information Communication Technology) and ITS (Intelligent Transport Systems) allows the efficiency of freight transport systems to be improved. ICT and ITS applications can integrate components for more efficient urban freight transport by private companies with transport policies oriented towards better urban environments promoted by the public sector. Therefore, ICT and ITS have good potential to promote public private partnerships for solving urban freight problems.

We believe that this proceedings book covers wide range of important features of city logistics. It will help researchers, students and administrators to understand the current status of urban freight transport issues, models, evaluation methods and planning. We hope that the ideas and perspectives contained in this book will encourage people to research and implement schemes for creating more efficient and environmentally friendly logistics systems for sustainable cities.
The Institute for City Logistics (http://www.citylogistics.org) has been active in undertaking research and development, organising conferences, workshops and short courses as well as publishing books in the area of city logistics. The Institute provides a platform for promoting exchanging knowledge, applying the new ideas and methods in modelling, evaluating and planning city logistics schemes. The Fourth International Conference on City Logistics will be organised by the Institute in 2005.

We would like to express our heartiest appreciation to all the authors of papers submitted to the conference for their contributions and to the members of organising committee for their help in organising the conference.

Eiichi Taniguchi
Russell G. Thompson
October 2003
THE ORGANISING COMMITTEE FOR 3RD INTERNATIONAL CONFERENCE ON CITY LOGISTICS (MADEIRA, PORTUGAL, 25-27 JUNE 2003)

Chair person
Eiichi Taniguchi Kyoto University, Japan

Russell G. Thompson The University of Melbourne, Australia

Michael Browne The University of Westminster, UK

Toshinori Nemoto Hitotsubashi University, Japan

Tadashi Yamada Hiroshima University, Japan

Ron van Duin Delft University of Technology, The Netherlands

Johan G.S.N. Visser Delft University of Technology, The Netherlands

Kazuya Kawamura University of Illinois, USA

Jose Holguin-Veras Rensselaer Polytechnic Institute, USA

Dieter Wild PTV, Germany
CONTRIBUTORS

Julian Allen University of Westminster, UK
Louis Alligier Laboratoire d’Economie des Transports, France
Christian Ambrosini Laboratoire d’Economie des Transports, France
Stephen Anderson University of Westminster, UK
Yasuo Asakura Kobe University, Japan
Mem Baybars Transport for London (TfL) Street Management, UK
Saurav Dev Bhatta University of Illinois, USA
Daniel Bollo Inrets, Arcueil, France
Michael Browne University of Westminster, UK
José Mexia Crespo de Carvalho ISCTE – University of Lisbon, Portugal
Georgina Christodoulou University of Westminster, UK
Pablo Cortés University of Seville, Spain
Alvaro Costa Universidade do Porto, Portugal
Wanda Debauche Belgian Road Research Centre, Belgium
J.H.R. van Duin Delft University of Technology, the Netherlands
Gaetano Fusco Università di Roma “La Sapienza”, Italy
Simone Gragnani Federtrasporto, Rome, Italy
Kim Hassall The University of Melbourne, Australia
Eiji Hato Ehime University, Japan
Makoto Hayano Docon Co. Ltd., Japan
Katsuhiko Hayano University of Marketing and Distribution Sciences, Japan
Fred J.P.Heuer OECD Programme of Research on Road Transport and Intermodal Linkages Working Group on Urban Freight Logistics, Chairman, the Netherlands
José Holguín-Veras Rensselaer Polytechnic Institute, USA
Tatsuhide Ito Docon Co. Ltd., Japan
Milan Janic Delft University of Technology, the Netherlands
Henrik Ensliev Jensen City of Copenhagen, Denmark
Peter Jones University of Westminster, UK
Yasushi Kakimoto Osaka City, Japan
Kazuya Kawamura University of Illinois, USA
David Kilsby Kilsby Australia, Australia
Soeren Kjaersgaard City of Copenhagen, Denmark
J.C. Kneyber Delft University of Technology, the Netherlands
Contributors

Uwe Köhler University of Kassel, Germany
Oliver Kunze PTV AG Karlsruhe, Germany
Juan Larrañeta University of Seville, Spain
Leorey Marquez CSIRO Australia, Australia
Sandra Melo Universidade do Porto, Portugal
Kazuhiro Mori Hiroshima Institute of Technology, Japan
Jesús Muñuzuri University of Seville, Spain
Toshiyuki Naito Docon Co. Ltd., Japan
Toshinori Nemoto Hitotsubashi University, Japan
Luis Onieva University of Seville, Spain
Daniele Patier Laboratoire d’Economie des Transports, France
Raluca Raicu University of South Australia, Australia
Serban Raicu Polytechnic University of Bucharest, Romania
Joan C. Rijsenbrij Delft University of Technology, the Netherlands
Jean-Louis Routhier Laboratoire d’Economie des Transports, France
Martin Ruesch Rapp Trans Ltd., Switzerland
Anusha Seetharaman Cambridge Systematics, Inc./Volpe Center, USA
Erwan Segalou Laboratoire d’Economie des Transports, France
Nariida Smith CSIRO Australia, Australia
Marielle Stumm Inrets Arcueil, France
Eiichi Taniguchi Kyoto University, Japan
Graham Tanner University of Westminster, UK
Luigi Tatarelli Università di “Roma Tre”, Italy
Mike Taylor University of South Australia, Australia
Russell G. Thompson The University of Melbourne, Australia
Gaetano Valenti ENEA, Rome, Italy
Maria Pia Valentini ENEA – Ene/Tec, Centro Ricerche Casaccia – Roma, Italy
Johan Visser Ministry of Economic Affairs, the Netherlands
Jaap Vleugel Delft University of Technology, the Netherlands
Tadayuki Wada Hokkaido Regional Development Bureau, Japan
Tony Whiteing University of Huddersfield, UK
Tadashi Yamada Hiroshima University, Japan
Yuji Yano Ryutsu Keizai University, Japan
Ryuichi Yoshimoto Systems Research and Development Institute of Japan, Japan
Yohei Yoshimura Hiroshima University, Japan
Rocco Zito University of South Australia, Australia
VISIONS FOR CITY LOGISTICS

Eiichi Taniguchi, Kyoto University, Japan
Russell G. Thompson, The University of Melbourne, Australia
Tadashi Yamada, Hiroshima University, Japan

ABSTRACT

This paper presents visions for city logistics that are required to set targets of the activities that can be achieved using city logistics schemes. Our visions for city logistics consider three pillars that are guiding principles: (a) Mobility, (b) Sustainability and (c) Liveability. These three pillars are supported by goals that brace the structure of the visions, comprising: (a) Global competitiveness, (b) Efficiency, (c) Environmental friendliness, (d) Congestion alleviation, (e) Security, (f) Safety, (g) Energy conservation and (h) Labour force. This paper discusses various features associated with urban freight transport issues to create mobile, sustainable and liveable cities. It concludes that there are a number of promising schemes that have the potential to fully realise the visions of city logistics, including: (i) Establishing effective partnerships between key stakeholder groups, (ii) Implementing information and communication technology and intelligent transport systems, (iii) Promoting corporate responsibility, (iv) Incorporating urban freight transport as an integral component of urban planning.

INTRODUCTION

Why are visions necessary?

This paper will present visions for city logistics. Why do we need visions? We have already given the definition of city logistics in the 2nd International Conference on City Logistics in Okinawa, Japan as:

"City Logistics is the process for totally optimising the logistics and transport activities by private companies with support of advanced information systems in urban areas considering the traffic environment, the traffic congestion, the traffic safety and the energy savings within the
2 Logistics systems for sustainable cities

framework of a market economy” (Taniguchi et al., 2001)

This statement gives us a conceptual idea of what is city logistics. However, in order to establish efficient and environmentally friendly urban logistics systems through the process of city logistics, we need visions for city logistics.

First of all, it is necessary to set targets of the activities that can be achieved using city logistics. In this context we would like to consider three pillars as shown in Figure 1:

(a) Mobility
(b) Sustainability
(c) Liveability

Mobility is a basic requirement for transporting goods within as well as into and from urban areas. Reliable road, rail and other modal network are essential in terms of connectivity and travel times. Providing enough road network capacity and alleviating traffic congestion is always important in the agenda of urban traffic management. In particular this is vital for urban freight transport, since many of freight carriers have to meet severe time windows set by customers within the framework of Just-In-Time transport systems.

Sustainability has become more important, since people are concerned about environmental issues including air pollution, noise, vibration and visual intrusion. Large freight vehicles are often the source of these negative environmental effects. Therefore, minimising the negative impacts on the environment by trucks is an important issue to be addressed when managing urban freight transport systems. As well, minimising energy consumption is required to ensure a sustainable city.

Liveability should be taken into account when planning urban logistics systems. Residents in urban areas enjoy the benefits of buying wide variety of commodities based on urban delivery systems to retail shops or even directly to homes. But they are also concerned about traffic safety and environment in community, which may be threatened by heavy commercial vehicles travelling within and near residential areas.

Therefore, the visions for city logistics is to create a mobile, sustainable and liveable city by supplying necessary goods for activities and collecting goods that are produced in the city as well as minimising negative impacts on the environment, safety and energy consumption.
As Figure 1 indicates, mobility, sustainability and liveability are three pillars of the visions for city logistics. They are supported by goals that brace the structure of the visions, comprising:

(a) Global competitiveness
(b) Efficiency
(c) Environmental friendliness
(d) Congestion alleviation
(e) Security
(f) Safety
(g) Energy conservation
(h) Labour force

The pillars are the guiding principles of city logistics. They represent the philosophy of city logistics. The pillars provide the strategic basis for planning and managing urban goods movement systems. Goods movement has a strong influence on the sustainability, mobility and liveability within urban areas. City logistics embraces these planning principles and strives to enhance them.